|  Generalized and Modified Coherent States |  | 
In General > s.a. coherent states;
  Squeezed States.
  * Idea: Several have been proposed,
    for systems other than the harmonic oscillator, and they differ considerably; Some
    generalized coherent states are highly non-classical.
  * Generalized: (Perelomov) A state
    of the form |ψg\(\rangle\)
    = T(g) |ψ0\(\rangle\),
    where T(g) is a representation of g ∈ G.
  * Weak: They do not admit a resolution
    of unity expressed in terms of a local integral; They arise, e.g., in the case that
    a group acts on an inadmissible fiducial vector.
And Group Theory > s.a. types of coherent states.
  @ And group representations: Perelomov CMP(72)mp/02,
    86;
    Guaita et al a2012.
  @ SU groups: Luo JMP(97),
    Basu PRS(99) [SU(1,1)];
    Mathur & Sen JMP(01)qp/00 [SU(3)];
    Barros e Sá JPA(01)qp/00 [SU(2)],
    Lachièze-Rey et al IJTP(03)mp;
    de Guise & Bertola JMP(02)
    [SU(n+1) on Tn];
    Nemoto JPA(00)qp,
    Mathur & Mani JMP(02)qp [SU(n)];
    Mathur & Paul JPA(05)qp [with SU(2) and SU(3) charges];
    Sadiq & Inomata JPA(07) [polynomial su(2) algebra];
    > s.a. quantum theory in phase space [qubits].
  @ SO groups: Lindner et al PRA(03)qp [SO(4) states as direction indicators];
    Xu & Ye IJMPA(04) [SO(2,1), for Coulomb problem].
  @ Euclidean groups: Isham & Klauder JMP(91).
  @ On Lie algebras: Antonsen IJTP(99)phy/97;
    Fujii hp/01,
    ht/01,
    qp/01-talk,
    YMJ(02)qp [on su(2) and su(1,1)].
  @ For deformed algebras: Sunilkumar et al qp/99;
    El Baz et al RPMP(02)mp;
    Roknizadeh & Tavassoly JPA(04)mp [f-deformed Fock space];
    Kowalski & Rembieliński JPA(04)qp [q-deformed on a circle];
    Alvarez-Moraga JPA(05)mp [coherent and squeezed];
      Skoda LMP(07) [Hopf algebras];
    Ching & Ng PRD(13) [with maximum momentum].
  @ Non-commutative spaces, generalized uncertainty relations:
    Yin & Zhang PLB(05);
    Naderi et al IJMPA(09);
    Dey & Fring PRD(12)-a1207;
    Dey a1609 [completeness of coherent states].
  @ Non-commutative quantum mechanics: Lubo JHEP(04)ht/03;
    Ben Geloun & Scholtz JMP(09)-a0901 [Gazeau-Klauder coherent states].
  @ Deformed oscillators: Chung IJTP(01);
    Nozari & Azizi IJQI(05)gq,
    Pedram IJMPD(13)-a1204 [harmonic oscillator with generalized uncertainty principle];
    El Baz mp/05 [k-deformed fermionic-Grassmann];
    Eremin & Meldianov TMP(06),
    a0810 [and uncertainties].
  @ Related topics: Coftas & Gazeau JPA(10)-a0803 [finite groups, and crystal structure];
    Mohamed et al JPA(11) [multiplicative group of non-zero \(\mathbb C\) numbers];
    Bojowald & Tsobanjan CQG(14)-a1401 [effective properties of group coherent states];
    Brahma et al a1612 [in de Sitter spacetime].
Other Modified Coherent States
> s.a. Ladder Operators [systems with continuous spectra].
  * Non-linear: Right-hand
    eigenstates of the product of the boson â operator and
    a non-linear function of the N operator.
  * Vector coherent states:
    A generalization of ordinary coherent states for higher-rank tensor Hilbert spaces.
  * Thermal: They provide a
    framework for generalizing the uncertainty relation to take into account
    both thermal and quantum fluctuations.
  @ Non-linear, even / odd: de Matos & Vogel PRA(96) [non-linear];
    Man'ko et al PS(97);
    Mancini PLA(97);
    Sivakumar PLA(98),
    JPA(00);
    Roy & Roy JPA(98),
    PLA(99),
    PLA(99),
    JPB(00),
    JPB(00);
    Wang et al IJTP(03),
    IJTP(03),
    IJTP(04);
    Guo et al IJTP(07).
  @ Gazeau-Klauder coherent states:
    Gazeau & Klauder JPA(99);
    Yadollahi & Tavassoly OC(10)-a1011 [theoretical scheme for generating them].
  @ Affine coherent states: Watson & Klauder JMP(00)qp;
    Klauder JPA(12)-a1108.
  @ Thermal coherent states:
    Mann et al JMP(89);
    Floquet et al IJMPA(17)-a1507 [algebraic formulation].
  @ Vector coherent states:
    Bagarello JPA(09)-a0904 [Gazeau-Klauder-type];
    Aremua et al a1109 [2D and 3D harmonic oscillators];
    Rowe JPA(12)-a1207.
  @ Other proposals: Klauder AP(95);
    Brif et al qp/98-fs [group theoretic];
    Penson & Solomon JMP(99);
    Martin Nieto & Truax OC(00)qp/99 [eigenstates of a j];
    Trifonov JOSA(00)qp;
    Fujii ht/01;
    Avron et al JMP(02)mp [in time-energy plane];
    Solovej & Spitzer CMP(03)mp/02,
    mp/02-proc [and Scott's correction];
    Thirulogasanthar & Honnouvo IJTP(04)mp/03 [z → f(z)];
    Appl & Schiller JPA(04)qp/03 [hypergeometric];
    Hartmann ht/03,
    Hartmann  & Klauder JMP(04)ht/03 [weak];
    Roknizadeh & Tavassoly JPA(04)qp,
    JMP(05)qp/04 [generalized from non-linear];
    Hassouni et al PRA(05) [algebraic systems];
    Tavassoly qp/05 [tutorial];
    Popov et al IJTP(10) [of the Barut-Girardello type];
    Twareque Ali et al JPA(11)-a1007 [on Hilbert modules];
    Guerrero et al JPA(11)-a1010 [multi-localized];
    Honarasa et al JPA(11)-a1103 [excited coherent states for continuous spectra];
    Philbin AJP(14)aug-a1311 [generalized coherent states and quantum optics];
    Hu et al a1512 [Laguerre polynomial excited coherent states];
    Bosso et al PRD(17)-a1704 [GUP-modified];
    Goldberg & Steinberg PRQ(20) [transcoherent states].
  @ Semi-coherent: & Mathews & Eswaran (73);
    Dodonov & Renó JPA(06) [properties].
  @ Photon-added states: Quesne PLA(01)qp [on the circle];
    Górska et al JPA(10)-a1007;
    Windhager et al OC(11)-a1009 [interference between coherent state and single-photon state];
    Barbieri et al PRA(10)-a1012 [experimental test];
    Sivakumar IJTP(14)-a1402;
    Mahdifar et al a1801 [on the sphere];
    > s.a. types of coherent states.
  @ Supersymmetric coherent states:
    Kochetov PLA(96) [path integral];
    Samsonov JMP(97);
    Akhtarshenas IJTP(96) [parasupersymmetric coherent states];
    Fernández et al JPA(07);
    Kornbluth & Zypman a1203 [harmonic oscillator, generalized supercoherent states];
    > s.a. modified quantum mechanics.
  @ Evolution: Kovner & Rosenstein PRD(85);
    Nikolov & Trifonov qp/04.
  @ Manifold of (generalized) coherent states:
    Fujiwara & Nagaoka JMP(99);
    Fivel PRA(02)qp.
  @ Comparisons: Crawford JPA(99);
    Fox & Choi PRA(00) [regular vs Gaussian Klauder].
  @ Related topics: Ali et al JPA(04)qp/03 [dualities and relationships];
    Boixo et al EPL(07)qp/06 [for open quantum systems, and noiseless subspaces];
    Bang & Berger PRA(09)-a0811,
    Marchiolli & Ruzzi AP(12) [discrete phase space];
    Heinosaari & Pellonpää JPA(12)-a1112 [and POVMs];
    Horzela & Szafraniec JPA(12) [measure-free approach];
    Allevi et al JOSA(13)-a1302 [phase-averaged coherent states];
    Drummond a1610 [in projected Hilbert spaces].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 4 jan 2021