|  Partial Differential Equations | 
Hyperbolic
  > s.a. types of wave equations; klein-gordon equation.
  * Properties: They admit an initial-value formulation.
  @ General references: Leray 52;
    Kundt & Newman JMP(68) [and characteristic propagation];
    Beyer gq/05-ln [linear and quasi-linear, semigroup methods];
    Hattori 13 [II/III].
  @ Non-linear: Li 94 [quasi-linear];
    Shatah & Sogge in Chruściel 97;
    Claudel & Newman PRS(98) [quasi-linear, with singularity in time].
  @ Characteristic: Frittelli JPA(04)mp,
    JPA(05)mp/04 [first-order, stability];
    Nicolas m.AP/05 [second-order wave equations].
  @ Singularities: Geroch JMP(83) [non-singularity theorem];
    Witt 95 [with conical points];
    Vickers & Wilson gq/01 [hypersurface singularities];
    Chen 10;
    Ghergu & Taliaferro 16.
Elliptic > s.a. Poisson Equation.
  * Steady-state equation: The general
    stationary limit of both the general wave and
    the diffusion equations,
    \[ -\nabla\cdot(p\nabla u) + qu = F(x)\;; \]
    Special cases are the Poisson equation \(\nabla^2u = -f\) (the case with \(p\) = const,
    \(q\) = 0, and \(f:= F/p\)) and the laplace equation.
  @ Numerical methods: Okawa IJMPA(13)-a1308-ln [and constraints in numerical relativity].
  @ Non-linear: in Nirenberg 74;
    Kiessling PhyA(00)mp [Poisson-Boltzmann, Paneitz];
    López-Fontán et al PhyA(07) [Poisson-Boltzmann].
Parabolic
  @ References: Friedman 64;
    Lieberman 96.
Integrability Conditions for a System of PDEs
  * Idea: Conditions
    to be satisfied by the (known) functions appearing in a system of
    coupled pde's, in order for it to admit solutions.
  * Example: If \(u_{,x}
    = F(x, y)\) and \(u_{,y} = G(x, y)\), need \(F_{,y} = G_{,x}\).
Types and Solution Methods > s.a. Boundary-Value
  Problems; green functions; Inverse
  Scattering; laplace equation; symmetries.
  * History: The
    symmetry reduction method of finding group-invariant solutions
    was proposed by S Lie in the XIX century.
  * Symmetries and
    reduction: Any symmetry reduces a second-order differential equation
    to a first-order equation; Variational symmetries of the action
    (exemplified by central field dynamics) lead to conservation laws,
    symmetries of only the equations of motion (exemplified by scale-invariant
    hydrostatics) yield first-order non-conservation laws between invariants.
  * Separation of variables:
    Leads to ordinary differential equations in eigenvalue form.
  @ Superposition of solutions: Zhdanov JPA(94) [non-linear separation of variables];
    Cariñena & Ramos AAM-mp/01;
    > s.a. Ermakov System.
  @ Symmetries and reduction: Baumann et al JPA(94) [non-classical];
    Anderson et al CMP(00)mp/99,
    CMP(00)mp/99,
    mp/01-proc
      [generalization to non-transverse actions];
    Nucci TMP(05) [Lie group analysis];
    Gaeta & Mancinelli IJGMP(05)mp/06 [asymptotic symmetries];
    Cicogna & Laino RVMP(06)mp [conditional symmetries];
    Bludman a1106 [non-variational symmetries];
    Steinberg & de Melo Marinho a1409-ln [computational approach].
  @ Non-symmetric solutions: Martina et al JPA(01)mp [infinite-dimensional symmetry group].
  @ First-order: Holcman & Kupka QJM(05)mp/03 [on compact manifolds];
    Bogoyavlenskij CMP(96) [existence of Hamiltonian structures];
    López 12.
  @ Second-order: LaChapelle AP(04)mp,
    AP(04)mp [linear, path-integral method];
    Cioranescu et al 18.
  @ Linear: Hörmander 85;
    Polyanin 01 [handbook].
  @ Non-linear: Adomian 94;
    Kong & Hu PLA(98) [solutions, geometric];
    Ramm MMMAA-mp/00;
    Ludu et al IJCMS-mp/02 [multiscale analysis];
    Peng PLA(03) [including sine-Gordon];
    Fairlie JPA(04)mp,
    JNMP(05)mp/04 [implicit solutions];
    Lü PLA(06) [Burgers equation-based solutions];
    Khater et al IJTP(06) [conservation laws];
    Torres-Córdoba a0709 [Monge equation, solution];
    Sals & Gómez a0805 [coupled systems];
    Polyanin & Zaitsev 11 [handbook];
    Anco et al Sigma(11)-a1105 [method of group foliation reduction];
    Maheswari & Sahadevan JPA(11) [conservation laws];
    Debnath 12;
    Tadmor BAMS(12) [numerical methods];
    Li & Song 16 [variational methods];
    > s.a. Riemann Equation; types of wave equations.
  @ Stochastic: Hochberg et al PRE(99)cm [stochastic noise];
    Hairer Nonlin(02)-mp/01 [reaction-diffusion];
    > s.a. effective potential; stochastic processes.
  @ Other types: Visser & Yunes IJMPA(03)gq/02 [scale-invariant];
    Barnaby & Kamran JHEP(08)-a0709,
    JHEP(08)-a0809 [infinitely many derivatives, initial-value problem];
    Tehseen & Prince JPA(13)-a1302 [using differential geometric methods];
    Ablinger et al a1608 [coupled systems, in terms of power series];
    > s.a. differential equations [fractional], Combinatorial PDEs.
  @ Spectral methods: Bonazzola et al JCAM(99)gq/98 [in general relativity];
    Piotrowska et al a1712 [non-smooth problems].
In Mathematical Physics
  > s.a. chaotic systems; diffusion.
  @ General references: Rubinstein 94;
    Geroch gq/96;
    Calin & Chang 04 [on Riemannian manifolds];
    Kirkwood 12;
    Lein a1508-ln.
  @ Geometrical aspects:
    Zharinov 92;
    Gràcia et al IJGMP(04)mp.
  @ Hyperbolicity: Gundlach & Martín-García PRD(04)gq [symmetric];
    Reula gq/04 [strong];
    Beig LNP(06)gq/04 [rev].
  > Gravity-related examples:
    see einstein's equation; initial-value
    formulation of general relativity; numerical relativity.
Other References > s.a. differential equations.
  @ General: Webster 47;
    Sommerfeld 49; Ayres 52;
    Petrovsky 54
      (reprint 91);
    Bers et al 64; Garabedian 64;
    Meis & Marcowitz 81; John 82;
    Bellman & Adomian 85;
    Zachmanoglou & Thoe 86;
    Stephani 89;
    Hubbard & West 90;
    Cronin 94;
    Xu a1205 [algebraic approaches].
  @ Books, III: Edelen & Wang 92;
    Folland 95;
    Stephenson 96;
    Christodoulou 00.
  @ And Lie groups: Olver  93;
    Dresner 98.
  @ Initial-value formulation:
    Bers et al 64 [non-second-order diagonal].
  @ Conservation laws:
    Anco & Bluman EJAM(02)mp/01,
    EJAM(02)mp/01;
    Zhang a1409 [new technique];
    Anco & Kara EJAM-a1510 [symmetry invariance].
  @ Computational:
    Wolf EJAM(02)cs.SC/03 [conservation laws];
    Hawley & Matzner CQG(04)gq/03 [elliptic equations and holes];
    Valiquette & Winternitz JPA(05)mp [discretization and symmetries];
    Formaggia et al 12;
    Bartels 15 [non-linear];
    > s.a. computational physics; Finite-Element Method;
      numerical relativity; Courant-Friedrichs-Lewy
      Condition.
  @ With Mathematica: Vvedensky 92;
    Ross 04; Stavroulakis & Tersian
    04.
  @ Handbook: Zwillinger 89;
    Polyanin et al 01 [first-order].
  @ Related topics: Werschulz 91 [complexity];
    Medvedev PRS(99) [Poincaré normal form];
    Evans BAMS(04) [entropy methods].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 19 nov 2018