|  Types of Constrained Systems | 
In General
  * Reducible constraints: Constraints that are not independent;
  For example, of the form pab,
  a = 0, with pab antisymmetric.
  @ General references: Chmielowski JMP(93) [classification];
    Bates & Śniatycki a1307 [extension of the Dirac theory];
    García-Chung et al a1701 [Dirac theory for time-dependent Hamiltonians].
  @ Local field theories, gauge theories:
    Anderson & Bergmann PR(51) [covariant field theories];
    Cabo et al JMP(93);
    Wald in(92);
    Grundling & Lledo RVMP(00)mp/98;
    Gotay et al phy/98 [GIMMsy 1, covariant approach, energy-momentum map];
    Gotay et al mp/04
      [GIMmsy II, covariant and canonical Lagrangian/Hamiltonian];
    Gitman & Tyutin JPA(05);
    Zharinov TMP(10) [zero-divergence constraints].
  @ Generally covariant: Schön & Hájíček
      CQG(90) [quadratic];
    Montesinos & Vergara PRD(02)gq/01 [quadratic \(\mapsto\) linear].
  @ Time-dependent:
    de León et al JPA(96),
    FdP(02)mp/01;
    Mangiarotti & Sardanashvily JMP(00) [Hamiltonian].
First-Class Constraints > s.a. constraints in general
  relativity; gauge theories / quantization
  of first-class systems.
  $ Def: The constraint
    (submanifold) Γ' in (Γ, Ω) is first-class
    iff for all covectors n normal to Γ',
    Ωab nb
    is tangential to Γ'.
  * Equivalently: The constraint
    (submanifold) Γ' is first-class if the Poisson bracket between any
    two constraints is again a combination of constraints; The constraint functions
    have to form a closed Poisson algebra (not necessarily a Lie algebra),
{Ci, Cj} = ∑k αijk Ck .
  * Dirac conjecture:
    All first-class constraints generate gauge transformations; The Dirac Hamiltonian
    can then be enlarged to an extended Hamiltonian including all first-class constraints,
    without changes in the dynamics; > s.a. gauge transformations.
  * Examples: Generally
    covariant theories, for which solving the field equations is equivalent to
    finding the dynamical variables.
  @ Reduction:
    Gogilidze et al PRD(96) [admissible gauges];
    Pons et al JPA(99)mp/98 [reduced phase space for gauge theories];
    Cantrijn et al JMP(99).
  @ And gauge, Dirac conjecture:
    Castellani AP(82),
    Costa et al PRD(85),
    Cabo & Louis-Martinez PRD(90) [proof];
    Gogilidze et al JPA(94),
    TMP(95);
    Maraner AP(96);
    Wang & Ruan PRA(96);
    Rothe PLB(02)ht,
    Rothe & Rothe JPA(03),
    AP(04) [Lagrangian and Hamiltonian];
    Pons SHPMP(05)phy/04 [incompleteness of Dirac's analysis];
    Gitman & Tyutin IJMPA(06)ht/05;
    Barbour & Foster a0808 [not always valid];
    Wang et al IJTP(09);
    Henneaux et al a1004-proc [subtleties, and Hořava gravity];
    Kiriushcheva et al a1112;
    Wang et al a1306 [proof of validity];
    Pitts AP(14)-a1310 [not valid];
    Hori a1812 [limits to validity].
  @ Dirac conjecture, counterexample:
    Cawley PRL(79),
    PRD(80); Wu IJTP(94);
    Jin & Li JPA(01) [higher-order Lagrangian];
    Hori a1902.
  @ Related topics: Mena JMP(96)gq/95 [reality conditions];
    Stoilov AdP(07)ht/05 [constraint-gauge duality];
    Deriglazov JPA(07) [N-th stage constraints turned into secondary ones];
    Dehghani & Shirzad a0811 [simplifying the algebra].
Second-Class Constraints > s.a. BRST transformations;
  Dirac Bracket; dissipation;
  quantization of second-class systems; Rotor.
  $ Def: The constraint
    surface is a non-degenerate symplectic manifold; Equivalently, not all
    Poisson brackets between constraints are combinations of constraints.
  * Procedure: One can
    either solve the second-class constraints explicitly, or implement them
    in the symplectic structure by working with Dirac brackets.
  @ General references:
    Chaichian et al AP(94) [classification];
    Vytheeswaran ht/99-in,
    IJMPA(02)ht/00 [and gauge invariance];
    Bertin et al AP(08)
      [Hamilton-Jacobi formalism, generalized brackets and reduced phase space];
    Bizdadea et al NPB(09)-a0904 [reducible].
  @ Observables: Lyakhovich & Marnelius IJMPA(01)ht [extended];
    Bratchikov JGP(06)ht/03.
  @ Made first-class:
    Batalin & Fradkin NPB(87);
    Harada & Mukaida ZPC(90);
    Batalin & Marnelius MPLA(01)ht [as gauge theory];
    Krivoruchenko et al IJMPA(07)ht/05 [underlying gauge symmetry];
    Deriglazov & Kuznetsova PLB(07)ht/06 [deformation of local symmetries].
  @ Faddeev-Jackiw approach:
    Barcelos-Neto & Wotzasek IJMPA(92),
    MPLA(92);
    Seiler JPA(95).
  @ Examples: Das & Ghosh FP(16)-a1508 [particle constrained to move on a torus knot].
Non-Holonomic Constraints > s.a. hamilton-jacobi theory.
  @ General references:
    Bates & Śniatycki RPMP(93) [symmetry reduction];
    de León & de Diego JMP(96);
    Ibort et al RSMT(96)mp/01 [as implicit differential equations];
    Chen et al PRS(97) [classification];
    Krupková JMP(97);
    Marle RPMP(98);
    Cortés et al PRS(01);
    de León et al mp/02, mp/02-conf [integrators];
    Chen JGP(04)mp/03 [stability];
    Sarlet et al JGP(05) [adjoint symmetries and first integrals];
    Benenti Sigma(07)m.DS  [simple approach];
    Ramírez & Sadovskaia RPMP(07);
    Grabowski et al JMP(09)-a0806 [new viewpoint];
    Flannery AJP(11)sep [d'Alembert-Lagrange principle].
  @ Geometry: Cushman et al RPMP(95);
    Morando & Vignolo JPA(98);
    Grifone & Mehdi JGP(99);
    Tavares JGP(03);
    Cushman et al 09.
  @ Variational principle: 
    Krupková JPA(09);
    Delphenich AdP(09)-a0908.
  @ And Hamiltonian: Flannery AJP(05)mar;
    Bloch et al RPMP(09)-a0812 [equations of motion from unconstrained Hamiltonian];
    Balseiro & García-Naranjo ARMA(12)-a1104 [geometric];
    Mestdag et al a1105-proc [Hamiltonization and geometric integration];
    Torres del Castillo & Sosa-Rodríguez IJGMP(14) [infinite number of Hamiltonians and symplectic structures].
  @ Examples:
    Gersten et al AJP(92)jan [ball rolling on a surface];
    Gatland AJP(04)jul [2-wheel cart driven by electrostatic forces].
  @ Field theories: Binz et al RPMP(02)mp,
    Vankerschaver et al RPMP(05)mp [multisymplectic];
    Vankerschaver & Martín de Diego JPA(08) [symmetries];
    > s.a. symplectic structures.
Generalized Types > s.a. variational principles [discrete systems].
  @ Higher-order constraints: Krupková JMP(94), JMP(00);
    Cendra & Grillo JMP(07);
    Grillo JMP(09);
    Campos et al JPA(10) [higher-order classical field theories];
    Martínez et al IJMPA(11) [perturbative Hamiltonian constraints].
  @ With fractional derivatives: Muslih & Baleanu JMAA(05)mp [Hamiltonian formulation];
    > s.a. hamiltonian systems.
  @ Other types:
    Mišković & Zanelli ht/03-proc,
    JMP(03)ht [irregular];
    Gomis et al NPB(04)ht/03 [non-local, reduced phase space];
    Volkov & Zubelevich a1403 [non-smooth].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 13 may 2019