|  Models in Canonical General Relativity | 
Metric Formulation, Reduced Models > s.a. models
  in canonical quantum gravity [midisuperspaces and minisuperspaces].
  @ One Killing vector field: Varadarajan PRD(95)gq [gauge fixing];
    Balasin & Aichelburg GRG(07)-a0705 [pp-waves].
  @ Spherical symmetry: Lund PRD(73);
    Benguria et al NPB(77) [with Yang-Mills fields];
    Gegenberg & Kunstatter PRD(12)-a1112 [collapse];
    Shestakova a1303-MG13,
    G&C(14) [in extended phase space];
    Bodendorfer et al PRD(15)-a1506 [radial gauge];
    > s.a. spherical symmetry.
  @ Cylindrically symmetry: Mena PRD(01)gq/00 [gauge fixing];
    Kouletsis et al PRD(03)gq;
    > s.a. canonical formulation.
  @ Locally homogeneous: Kodama PTP(98)gq/97;
    Tanimoto et al JMP(97)gq,
    gq/97-MG8.
  > Models:
    see bianchi models; FLRW models;
    schwarzschild solution; spherical symmetry.
Metric Formulation, with Matter
  > s.a. 2D gravity; 3D general relativity;
  dirac fields; hamilton-jacobi theory;
  perfect fluids.
  @ Scalar field: Darian CQG(98)gq/97 [+ Maxwell, solving Hamiltonian];
    Husain & Winkler PRD(05)gq [asymptotically flat, spherical];
    > s.a. FLRW models.
  @ Einstein-Maxwell theory: Arnowitt et al PR(60) [and point charge self-energy].
  @ Thin shells: Hájíček PRD(98)gq [super-Hamiltonian],
    JMP(99)gq/98 [+ black hole];
    Hájíček & Kijowski PRD(00) [and time];
    Hájíček & Kiefer NPB(01)ht/00 [embedding variables];
    Hájíček & Kouletsis CQG(02)gq/01,
    CQG(02)gq/01,
    CQG(02)gq/01 [two shells];
    Crisóstomo & Olea PRD(04)ht/03 [collapse];
    Gladush GRG(04)gq/03;
    Kijowski & Czuchry PRD(05)gq [non-spherical];
    Fiamberti & Menotti NPB(08)-a0708 [intersecting];
    Kijowski et al RPMP(09);
    > s.a. gravitating matter
      fields; metric matching.
  @ Null shells: Louko et al PRD(98)gq/97;
    Jezierski et al PRD(02)gq/01;
    > s.a. spherical symmetry.
  @ Other models: Nelson & Teitelboim PLB(77) [Einstein-Dirac];
    Bičák & Kuchař PRD(97)gq [dust];
    Kijowski & Magli CQG(98)gq/97 [thermoelastic, unconstrained];
    Hájíček & Kijowski PRD(98)gq/97 [discontinuous fluid];
    Steinhoff AdP(11)-a1106-PhD [spinning objects];
    Date a1110 [fermions];
    Schäfer & Jaranowski LRR(18)-a1805 [compact binaries, post-Newtonian  dynamics];
    > s.a. unimodular relativity [3-form].
Connection Formulation
  > s.a. asympotic flatness at spatial infinity; bianchi
  models; gowdy spacetime; instantons.
  @ Spherical symmetry:
    Bengtsson CQG(88);
    Bombelli & Torrence CQG(90) [Kantowski-Sachs];
    Fukuyama & Kamimura MPLA(91) [Schwarzschild];
    Kamimura et al MPLA(91) [Schwarzschild-de Sitter];
    Chakraborty2 NCB(00);
    Ben Achour et al PRD(17)-a1608 [self-dual, with matter].
  @ Bianchi models: Kodama PTP(88);
    Schön pr(91) [I];
    Calzetta & Thibeault gq/97/CQG [I, II, IX].
  @ Geroch group: Mizoguchi PRD(95)gq/94.
  @ Two-Killing vector field symmetry reductions: Husain PRD(96)gq;
    Ashtekar & Husain IJMPD(98)gq/97 [Gowdy + cylindrical waves];
    Zagermann CQG(98)gq/97.
  @ Other symmetry reductions: Brodbeck & Zagermann CQG(00)gq/99 [higher-dimensional].
Connection Formulation, with Matter > s.a. connection
  formulation of quantum gravity [fermions]; supergravity.
  @ General references: Ashtekar et al PRD(89) [Klein-Gordon, Dirac, Yang-Mills];
    Burnett et al pr(90);
    Tsuda et al gq/95,
    CQG(95)gq;
    Tsuda & Shirafuji gq/96 [spin-3/2].
  @ Scalar field: Capovilla PRD(92)gq [non-minimal];
    Koshti CQG(92);
    Montesinos et al JMP(99)gq,
    Bojowald & Kagan PRD(06) [non-minimal];
    Cianfrani & Montani PRD(09)-a0904 [non-minimal, without time gauge].
  @ Barbero-Immirzi parameter as local field:
    Taveras & Yunes PRD(08)-a0807;
    Calcagni & Mercuri PRD(09)-a0902;
    Mercuri & Taveras PRD(09)-a0903 [matter coupling and cosmology];
    Torres-Gomez & Krasnov PRD(09) [with fermions];
    Gates et al PRD(09)-a0906 [and 4D, N = 1 supergravity];
    Cianfrani & Montani PRD(09);
    Bombacigno et al PRD(16)-a1607 [cosmology, bounce];
    > s.a. Peccei-Quinn Mechanism.
  @ Fermion fields: Jacobson CQG(88);
    Randono ht/05 [parity violation and Immirzi parameter];
    Mercuri PRD(06)gq,
    gq/06-MG9,
    NCB(07),
    PRD(08) [arbitrary γ];
    Bojowald & Das PRD(08)-a0710 [real Ashtekar-Barbero variables];
    Alexandrov CQG(08)-a0802 [role of the Immirzi parameter];
    Kaźmierczak PRD(09)-a0812;
    Cianfrani & Montani PRD(10)-a1001 [massless, non-minimal coupling].
  @ Perfect fluids: Bombelli & Torrence CQG(90) [and Kantowski-Sachs models].
  @ Maxwell field: Husain CQG(93)gq [Wilson loop variables].
  @ Yang-Mills fields:
    Chakraborty & Peldán IJMPD(94),
    PRL(94).
Degenerate Metrics > s.a. extensions
  of general relativity; types of metrics.
  @ General references: Bengtsson IJMPA(89),
    CQG(90),
    GRG(93);
    Maluf CQG(93);
    Romano PRD(93)gq;
    Reisenberger NPB(95)gq [diffeomorphisms and constraints];
    Matschull CQG(96)gq/95;
    Jacobson CQG(96)gq;
    Lewandowski & Wisniewski CQG(97)gq/96,
    CQG(99)gq;
    Bengtsson & Jacobson CQG(97)gq;
    Ma et al CQG(99)gq;
    Ma & Liang GRG(98),
    MPLA(98),
    PRD(99)gq.
  @ Solutions: Baez CMP(98)gq/97;
    Yoneda et al PRD(97)gq [trick].
  @ No-go results: in Bombelli & Torrence CQG(90).
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 7 jan 2020