|  Types of Metrics | 
Metrics with Symmetries > s.a. axisymmetry; general relativity solutions with symmetries; killing fields; spherical symmetry.
Degenerate Metrics > s.a. extended signatures;
  geometrodynamics; models in canonical general relativity;
  quantum gravity and geometry; spin structure.
  * Example:
    [@ Yoneda et al PRD(97)gq]
      A metric which is flat everywhere but degenerate at x = t = 0 is
ds2 = −[1 − (f'(t) h(x))2] dt2 + [−2 f'(t) h(x) (1−f(t) h'(x))] dt dx + [1 − f(t) h'(x)]2 dx2
    ((t, x) \(\mapsto\) (t, x−fh));
    E.g., f = exp{−t2},
    h = x exp{−x2},
    −1 < f'(t), h(x) < 1 &
    −1 < f(t), h'(x) ≤ 1 (= 1 at 0).
  @ General references:
    Kreisel et al AdP(63);
    Crampin PCPS(68);
    D'Auria & Regge NPB(82) [instanton];
    Koshti & Dadhich CQG(89);
    Bengtsson CQG(91);
    Varadarajan CQG(91);
    Percacci in(92) [quantum field theory approach];
    Gratus & Tucker JMP(96)gq [2D];
    Dray IJMPD(97)gq [tensor distributions];
    Baez CMP(98) [from 2D BF-theory];
    Deser CQG(06) [reason for invertibility].
  @ Geometry: Borde et al CQG(99)gq [causal continuity];
    Stoica IJGMP(11)-a1105;
    > s.a. causal structure; newton-cartan
      theory [connections]; singularities.
  @ And matter: Cabral & Rivelles CQG(00)ht/99 [particle dynamics];
    > s.a. lagrangian systems; quantum fields
      in curved backgrounds; unified theories.
Constant-Curvature Manifolds
  > s.a. riemann tensor; sphere.
  * Metric: For any signature
    and dimension d > 2, in stereographic coordinates it is
ds2 = (1 + \(1\over4\)kr2)−2 ηij dxi dxj , with r2:= ηij xi xj , ηij = diag(±1, ±1, ..., ±1) .
  * Curvature: The Riemann tensor
    is of the form Rabcd
    = \(1\over n(n-1)\)R (gac
    gdb
    − gad
    gcb),
    so Rab
    = \(1\over n\)Rgab;
    in 4D Cabcd = 0,
    and Gab
    = −\(1\over4\)Rgab.
    * Examples: The n-sphere
    (R > 0); For the Lorentzian case, Minkowski space (R =
    0), de Sitter (R > 0), anti-de Sitter (R < 0).
  @ References: Wolf 87;
    Dryuma TMP(06)m.DG/05 [3D].
Other Special Types
  > s.a. 2D manifolds; 3D manifolds;
  lie groups; types of lorentzian
  geometries; weyl tensor.
  * Zoll metric: A Riemannian
    gab on a compact M,
    all of whose geodesics are simply periodic, with period 2π; For example, the
    standard metric on the 2-sphere.
  * Zollfrei metric: A Lorentzian
    gab on a compact M,
    all of whose null geodesics are periodic (a conformally invariant property).
  * Neutral metric: A pseudo-Riemannian
    metric of signature (n, n).
  @ Vanishing curvature invariants: Pravda et al CQG(02)gq;
    Coley PRL(02)ht [and string theory].
  @ Finiteness results:
    Grove et al BAMS(89).
  @ Bounded curvature: Cheeger & Colding JDG(97) [R bounded below];
    > s.a. riemannian geometry;
      types of lorentzian geometries.
  @ Zoll, zollfrei: in Guillemin 89;
    Nakata JGP(07) [singular self-dual].
  @ Other types:
    Win gq/96 [diagonal, efficient calculation];
    Shi & Tam CMP(04) [quasispherical];
    Cuccu & Loi JGP(07)
      [balanced metrics on \(\mathbb C\)n];
    Anderson & Herzlich JGP(08) [with prescribed Ricci curvature];
    Kalafat et al JGP(13) [self-dual, on non-simply-connected 4-manifolds];
    Santalla et al NJP(15)-a1407 [random geometry];
    Georgiou & Guilfoyle a1605 [neutral 4-manifolds with null boundary];
    > s.a. riemann tensor [in terms of curvature invariants].
  @ Singular metrics, distributional curvature:
    Kunzinger & Steinbauer AAM(02)m.FA/01 [Colombeau];
    in Dray in(17)-a1701;
    > s.a. coordinates [discontinuous transformations];
      gravitational-wave solutions [impulsive]; hamiltonian
      and lagrangian systems.
Information Geometry > s.a. entropy;
  information; solutions of gauge theories.
  * Idea: The introduction of a
    metric on the space of parameters for models, e.g., in statistical mechanics.
  * For probability distributions:
    If pi is the probability
    for the i-th event, a natural choice is
    ds2
    = ∑i
    dpi2
    / pi .
  @ General references: Streater in(97);
    Amari & Nagaoka 00;
    Naudts & Anthonis LNCS-a1506 [extension to non-statistical systems];
    Goddard a1802 [treatise].
  @ For probability distributions: Bengtsson AIP(06)qp/05 [Fisher-Rao metric];
    > s.a. probabilities in physics; riemannian
      geometry / actions for gravity.
  @ And phase transitions: Janke et al PhyA(04)cm;
    Kumar et al PRE(12)-a1210 [geodesics, classical and quantum second-order phase transitions];
    Maity et al PRE(15)-a1503 [and the renormalization group].
  @ Quantum:
    Álvarez-Jiménez & Vergara IJQI(19)-a1904 [from generating functions];
    Erdmenger et al a2001 [in quantum field theory, examples];
    > s.a. coherent states; origin of quantum theory.
For States of a Physical System
  > s.a. mixed states; riemannian geometry;
  thermodynamics [geometry of state space]; types
  of distances.
  * Fubini-Study metric: A complex tensor
    whose real part is the Riemannian metric that measures the 'quantum distance', and
    whose imaginary part is the Berry curvature; > s.a. Encyclopedia of Mathematics
    page;
    Wikipedia page.
  * Cayley-Fubini-Study metric:
    For a small change dψ from a pure quantum state ψ,
ds2 = \([\langle{\rm d}\psi \mid {\rm d}\psi\rangle - \langle{\rm d}\psi \mid \psi\rangle\,\langle\psi \mid {\rm d}\psi\rangle] \,/\, \langle\psi \mid \psi\rangle\) ;
    It can be considered as the infinitesimal version of the distinguishability distance
    d(ψ1,ψ2)
    := |1 − \(\langle\psi_1|\psi_2\rangle\) |2.
  @ Fubini-Study metric:
    Anandan PLA(90) [physical meaning];
    Cheng a1012 [pedagogical];
    Álvarez-Jiménez & Vergara a1605 [and gauge invariance];
    > s.a. types of distances; phase space.
  @ Other metrics on the space of quantum states: Man'ko et al JPA(17)-a1612 [from relative entropy].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 28 jan 2020