|  Conservation Laws, Conserved Quantities | 
In General
  > s.a. asymptotic flatness at spatial and
  null infinity; lagrangian dynamics.
  * Applications: They are
    useful for studying the evolution of a system without knowing details about
    the motion, to give a classification of all possible evolutions, etc, and
    to reduce the order of the differential equations describing the motion.
From Symmetries > s.a. differential equations;
  noether symmetries; killing fields
  [Killing vectors and tensors]; symmetries of dynamical theories.
  * Idea: Generators of symmetries
    give rise to conserved currents, whose integrals are conserved quantities.
  * Types: Conserved
    quantities can correspond to Noether, Mei and Lie symmetries in a
    Lagrangian dynamical system; Topological charges on the other hand
    do not give rise to symmetry transformations on the fields.
  * Superpotential:
    An (n−2)-form U(ξ) in an n-dimensional
    spacetime, associated with an infinitesimal Lagrangian symmetry ξ,
    such that the boundary term in the conserved quantity Q(ξ)
    = Qbulk(ξ)
    + Qbdry(ξ) is
Qbdry(ξ) = ∫∂(Σ) U(ξ) ;
    The term also denotes a potential θabc
    for a stress-energy pseudotensor, θmn
    = ∂a
    θm[na].
  @ General references: Levi-Civita RAL(1899),
    translation Saccomandi & Vitolo RCD(12)-a1201 [for Hamilton's equations];
    Wigner PT(64)mar;
    Katzin JMP(73) [quadratic constants of the motion];
    Rosen & Freundlich AJP(78)oct [general framework];
    Norbury EJP(88) [pedagogical, for momentum];
    Schulte SHPMP(08) [and particle families];
    Smith SHPMP(08) [in Lagrangian mechanics];
    Ivanova et al PhyA(09)-a0806;
    Fang et al PLA(10) [types, and proposal of new types];
    Ngome Abiaga PhD(11)-a1103 [Van Holten's covariant algorithm];
    Nucci PLA(11) [Lie symmetries of Lagrangian systems];
    Anco IJMPB(16)-a1512.
  @ Non-Noether symmetries:
    Hojman JPA(92)
    + González-Gascón JPA(94)
    + Lutzky JPA(95);
    Anco & Bluman PRL(97) [for field theories];
    Kara & Mahomed IJTP(00);
    Chavchanidze mp/02,
    JGP(03)mp/02;
    Birtea & Tudoran IJGMP(12);
    but see Deser a1905;
    > s.a. lagrangian dynamics.
  @ Superpotential: in Francaviglia & Raiteri CQG(02)gq/01;
    Katz & Livshits CQG(08)-a0807 [from variational derivatives, gravity theories];
    Sardanashvily IJGMP(09)-a0906 [and gauge conservation laws];
    Adamek & Novotny a1606 [new superpotential].
  @ Related topics: Kara et al IJTP(99) [approximate symmetries];
    Cicogna MMAS(13)-a1307 [and generalizations].
Related Concepts
  > s.a. Chevreton Tensor; geodesics;
  energy; observables;
  stress-energy pseudotensor;
  superselection rules.
  * Continuity equation:
    A local, differential form of conservation equation; If u is
    a velocity/flow 4-vector and f a source strength, then
∇a ua = f , or ρ,t + ∇ · (ρv) = f in 3+1 form .
  @ General references: Horwood JMP(07) [higher-order first integrals].
  @ Continuity equation:
    Belevich JPA(09);
    Schild PRA(18)-a1808 [with quantum clock];
    Laba & Tkachuk a2004 [in a space with minimal length];
    Herrmann a2005.
  @ Energy-momentum conservation:
    Giachetta et al G&C(99) [gauge approach];
    Weatherall SHPMP-a1702 [as a consequence of the gravitational field equations];
    Deser & Pang PLB(19)-a1811
      [are all identically conserved local symmetric tensors variations of some coordinate invariant action?];
    Pitts a1909
      [in general relativity, and Cartesian mental causation; ?];
    > s.a. energy-momentum tensors;
      gravitational energy-momentum.
  @ Time-dependent invariants of motion:
    Sarris & Proto PhyA(05) [complete sets of non-commuting observables].
  @ Related topics:
    Boyer AJP(05)oct [center of energy, illustrations];
    > s.a. wigner function.
Specific Types of Theories > s.a. graph theory in physics;
  noether theorem; non-local theories.
  * In Newtonian mechanics:
    Only 4 were known at the end of the XIX century, mass, linear momentum,
    angular momentum and energy.
  * In relativistic mechanics:
    For geodesic motion in curved spacetime, each Killing vector field
    ξa gives rise to a
    constant of the motion, pa
    ξ a, and so does
    each Killing tensor.
  * In relativistic field theory: They are expressed by
    T ab;b
    = 0; If the spacetime has a Killing vector field ξa,
    then T ab
    ξb is a conserved current.
  @ Gauge theories: Chodos CMP(79) [Yang-Mills theory];
    Przeszowski JPA(89) [non-abelian currents];
    Deser & Henneaux MPLA(95)ht [abelian and non-abelian currents];
    Barnich et al LMP(04)gq [n−2 forms in curved spacetime, classification];
    Manno et al JGP(08) [second-order field equations and variational principles];
    Berche AJP(16)aug [classical and quantum mechanics];
    Burns AACA(19)-a1906 [local charge conservation implies Maxwell's equations].
  @ Spinor fields: Anco & Pohjanpelto PRS(03)mp/02 [any spin].
  @ Gravity: Wald & Zoupas PRD(00)gq/99;
    Papadopoulos JMP(06)gq/05 [essential constants];
    Obukhov & Rubilar PRD(06)gq,
    PRD(07)-a0712,
    PLB(08)-a0712;
    Fabris a1208-proc [and cosmology];
    García-Parrado a1606 [4D spacetime with a Killing vector];
    Hopfmüller & Freidel PRD(18)-a1802 [along null surfaces];
    Andersson et al a1812
      [linearized gravity, spin and orbital angular momentum];
    Aoki et al a2005;
    Lopes de Lima a2103-in;
    > s.a. gravitational action and energy;
      higher-order theories; quasilocal energy.
  @ Gravity, quasilocal charges:
    Kim et al PRL(13);
    Chen et al a1312;
    Hyun et al PRD(14)-a1406 [and holography];
    Bart a1908 [general prescription].
  @ Generalized gravity:
    Alves et al GRG(08)-a0710 [in massive graviton theory];
    Lompay & Petrov JMP(13)-a1309 [metric-torsion theories];
    Obukhov & Puetzfeld PRD(14)-a1405 [metric-affine gravity];
    Setare & Adami NPB(16)-a1511 [Chern-Simons-like theories];
    Obukhov et al PRD(15)-a1511 [generally covariant theories];
    Ghodrati et al EPJC(16)-a1606 [in f(R) gravity].
  @ Hamiltonian systems:
    Cariglia et al JMP(14)-a1404 [covariant algorithm using conformal Killing tensors];
    Torres del Castillo a1408.
  @ Quantum mechanics: Sharp & D'Amico PRB(14)-a1403 [metric-space formulation];
    Ohsawa JMP(15)-a1410 [and symmetries, in semiclassical Gaussian wave packet dynamics];
    Torres del Castillo & Herrera a1510 [and unitary symmetries of the Hamiltonian];
    Aharonov et al a1609 [questions about the meaning];
    > s.a. quantum spin models; relativistic
      quantum mechanics; schrödinger equation.
  @ Particle dynamics:
    Katzin & Levine JMP(74);
    Cetto & de la Peña AJP(84)jun
      [relationship between energy and adiabatic invariant J];
    Hojman et al JMP(86),
    Del Castillo & Hojman JMP(90) [geodesic motion];
    Igata et al PRD(11)-a1005 [constrained, particle around a black hole];
    Feroze MPLA(10)-a0905 [for curved spacetimes];
    Cariglia et al CQG(14)-a1401 [Killing tensors and canonical geometry];
    Maughan & Torre GRG(18) [and affine symmetries];
    > s.a. diffusion.
  @ Approaches, special situations: Popovych & Sergyeyev PLA(10) [two independent variables, normal form of evolution equations];
    Peng a1607 [for differential-difference equations];
    Ruggieri & Speciale JMP(17)-a1612 [pdes, algorithmic computation];
    Dray in(17)-a1701 [piecewise conserved quantities].
  > Related topics: see angular
    momentum; charge [including non-conservation]; electromagnetism;
    energy; energy-momentum tensors;
    interaction; momentum.
References > s.a. Superposition Principle.
  @ General: Takens 77;
    Uhlenbeck in(83);
    Amigo & Reeh FdP(88)
      [additive constants of motion]; Serre 00;
    Jiang & Li IJTP(07) [classical vs quantum];
    Popovych & Samoilenko JPA(08) [complete description for second-order 2-dimensional equations];
    Haywood 10 [group theory];
    Lange PhSc(11) [conceptual];
    Herrmann a1901 [unified formulation];
    Maudlin et al SHPMP-a1910
      [history, role, and semiclassical gravity].
  @ Other types: Gorni & Zampieri a1412 [non-local constants of motion in Lagrangian dynamics];
    Post & Winternitz a1501
      [N-th order integrals of motion].
  @ Related topics: Olszewski AJP(83)oct [non-conservation of E, p, L in non-static spacetime];
    Sidharth CSF(00)qp/98 [statistical view];
    Fagotti a1408 [quasi-conserved operators];
    Reintjes a1510 [constrained systems of conservation laws];
    Palese & Winterroth a2012-proc [Noether
      theorems, 'proper' and 'improper' conservation laws, and conservation of energy in general relativity].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 13 mar 2021