|  Classical Electromagnetism: Matter and Solutions | 
Particles and Extended Objects > s.a. Electrodynamics;
  Maxwell-Lorentz Equations; monopoles;
  radiation; Thomas Precession.
  @ General references: Bogolubov et al a1204
      [Lagrangian and Hamiltonian aspects of electrodynamic vacuum-field theory models].
  @ Dipoles: Anandan Nat(97)ht/98,
    PRL(00)ht/99 [interactions];
    Power & Thirunamachandran PRS(01),
    PRS(01) [field];
    Pospelov & Ritz AP(05) [values, and CP violation];
    Troncoso & Curilef EJP(06) [in a magnetic field];
    Kholmetskii et al EJP(11) [force on a moving dipole];
    > s.a. distributions.
  @ Other types of particles:
    Zatorski & Pachucki PRA(10) [finite-size spinning particles];
    Dewar & Leykam PPCF(12)-a1107-conf [dressed test particles];
    Galeriu a1509
      [electric charge, modeled by infinitesimal length elements, in hyperbolic motion];
    > s.a. particle models;
      relativistic particle [charged].
  @ Extended objects: Stöckel mp/07 [extended charged particle in electromagnetic field, covariant equations of motion];
    Kholmetskii & Yarman EJP(08) [fluid moving in an external electromagnetic field, apparent paradoxes];
    Gralla et al PRD(10)-a1004 ["bobbing" and "kicks", and gravity];
    Van Kortryk a1410 [line segment, history].
  > Related topics:
    see early-universe nucleosynthesis
    [electromagnetic cascades and lithium]; general relativity
    solutions [with current loops]; particle effects [creation].
Fields in Extended Media
  > s.a. electricity; electromagnetic
  field dynamics; QED phenomenology [quantum theory].
  * Permittivity: The second-rank
    tensor εij (often symmetric
    with three equal eigenvalues, εij
    = diag(ε, ε, ε) and identified with 
    a scalar) such that D = ε E.
  * Dielectric constant: The ratio
    κ = E0/E
    > 1 between the fields E0
    without dielectric and E with dielectric, produced by the same
    charges.
  * Field strength: The tensor
    I ab = Z
    abcd Fcd , where
    Z ijkl  = \(1\over2\)εijm
    εkln
    μ−1mn
    and Z 0i0j = −Z 0ij0
    = Z i0j0 = −Z i00j
    −\(1\over2\)εij ,
    is sometimes used (> see black-hole analogs).
  * Electroacoustic effect: When an acoustic
    wave propagates through an electrically conducting surface, it can drag electric charge along
    with it, just as wind drags autumn leaves along a street.
  @ General references: Robinson 73;
    Hehl & Obukhov phy/00
      [D, H, E, B];
    Wesenberg & Molmer PRL(04)qp [random dipole distribution];
    Leung & Ni EJP(08) [on derivation];
    Neilson & Senatore ed JPA(09)#21 [strongly-coupled systems];
    E et al a1010
      [effective Maxwell equations in perfect crystals, from time-dependent density functional theory];
    Mansuripur 11 [macroscopic equations as the foundation of classical electrodynamics];
    Schuster & Visser PRD(17)-a1706 [fully covariant description];
    Partanen & Tulkki PRA(18)-a1803 [non-dispersive, angular momentum];
    Oue JMO(19)-a1906 [electromagnetism in a medium at finite temperature].
  @ Permittivity: Cancès et al a1010-proc [and microscopic crystal structure];
    Mainland & Mulligan a1810 [of the vacuum, calculation].
  @ Dielectric constant: Ravndal a0804, Niez AP(10) [effective theory];
    > s.a. water.
  @ Moving media: Hertzberg et al AJP(01)jun-gq [rotating dielectric and special relativity];
    Red'kov & Spix ht/06-proc [uniform];
    Banerjee et al AJP(09)may [two charged conducting spheres orbiting each other];
    Canovan & Tucker AJP(10)nov [uniformly rotating dielectric];
    Goto et al PRS(11),
    PRS(11)
      [inhomogeneous rotating media and the Abraham and Minkowski tensors];
    Itin AP(12)
      [covariant matching conditions on an arbitrarily-moving surface between two media].
  @ Dispersive media: Tip JMP(06) [and absorptive];
    Mostafazadeh PLA(10) [and inhomogeneous, wave propagation];
    Cassier et al a1703;
    > s.a. dispersion.
  @ Non-linear media:
    Babin & Figotin CMP(03);
    Konopelchenko & Moro JPA(04) [geometric optics]. 
  @ Inhomogeneous media: Kravchenko ZAA-mp/01 [quaternion formulation];
    Dereli et al PLA(07) [covariant framework].
  @ Waves in other media: Kravchenko & Oviedo mp/01 [chiral];
    De Lorenci & Souza PLB(01)gq [effective geometry];
    Masood & Saleem IJMPA(17)-a1607 [extremely dense media];
    > s.a. radiation.
  @ With other fields: Masmoudi & Nakanishi CMP(03) [Maxwell-Dirac and Maxwell-Klein-Gordon, uniqueness];
    Antoniou G&C(17)-a1508 [coupling to a scalar field];
    Esen et al a1607 [Hamiltonian coupling];
    > s.a. chern-simons theory.
  @ Quantization: Philbin NJP(10)-a1009 [macroscopic, canonical];
    Horsley PRA(11)-a1106 [magnetoelectric media].
  @ Related topics: Bastian PT(94)feb [in fish];
    Eisenberg SA(98)jun [defibrillation];
    news PT(00)may,
    news pw(07)mar [ε < 0];
    Ilisavskii et al PRL(01)
    + pn(01)sep [anomalous electroacoustic effect];
    Perlick JMP(11)-a1011 [constitutive laws for symmetric hyperbolic equations];
    > s.a. Continuous Media; earth [atmosphere];
      technology [ferroelectrics]; energy-momentum;
      Insulators; light; magnetic
      effects [magnetodielectric materials]; phenomenology of magnetism [including force-free
      fields]; physics teaching and labs [measurements].
Methods and Solutions > s.a. duality;
  electromagnetism in curved spacetime; forms;
  gauge theory solutions; laplace
  equation; lattice gauge theories.
  * Waves: Notice that,
    becuse of the coupling between electromagnetism and gravity, all
    electromagnetic waves are also gravitational waves!
  * Remark: There are only 11
    separable problems (coordinate systems), only 4 of which are not axisymmetric.
  @ Retarded fields: & Chubykalo & Vlaev, comment Škovrlj
    & Ivezić IJMPA(02),
    Jackson IJMPA(02).
  @ Zero-energy solution:
    Chubykalo MPLA(98);
    Dvoeglazov in(00)phy/99.
  @ Superluminal solutions:
    Capelas de Oliveira & Rodrigues PLA(01)mp;
    Zamboni-Rached et al PRE(01)phy/00,
    EPJD(02)phy/01,
    PRE(03)phy/02 [wave guide].
  @ Singularities: Barletta & Dragomir PS(14) [propagation along characteristics]. 
  @ Other solutions: Katsenelenbaum SPU(94) [approximate];
    Białynicki-Birula & Białynicka-Birula PRA(03) [with vortex lines];
    Lynden-Bell PRD(04) [relativistic rotating disk];
    Huttunen et al JCP(07) [ultra weak variational formulation];
    Padmanabhan AJP(09)feb [field of moving charge];
    Kijowski & Podles JGP(09) [near arbitrarily moving multipole particle];
    Ardavan et al JMP(09)-a0908 [moving source];
    Ortaggio & Pravda CQG(16)-a1506 [with vanishing scalar invariants];
    Cvitan et al CQG(16)-a1508 [in spacetimes with symmetries];
    Ortaggio & Pravda PLB(18)-a1708
      [with vanishing quantum corrections].
  @ Waves: Walker & Dual gq/97 [longitudinally oscillating];
    Bičák & Schmidt PRD(07)-a0803 [with helical symmetry];
    Mansuripur PRA(11)-a1205 [spin and orbital angular momentum];
    Testa AP(13) [momentum inside a dielectric];
    Cooperstock IJMPD(15)-GRF [and gravitational waves];
    > s.a. momentum [field momentum]; particles
      [field configurations as particle models]; wave phenomenology.
  @ Electromagnetic wave memory: Bieri & Garfinkle CQG(13)-a1307;
    Susskind a1507
      [elementary derivation and proposed setup].
  @ Boundary-value problems: Balean & Bartnik PRS(98) [null/timelike boundary];
    Reula & Sarbach JHDE(05)gq/04 [as model for general relativity].
  @ Related topics: Ferraro AJP(97)may [Lorentz transformations];
    Mosley JMP(98) [two complex Us];
    Costa De Beauregard FP(04) [status/measurement of A];
    Moses JMP(04)
      [using irreducible representations of Poincaré group];
    > s.a. aharonov-bohm effect.
  > Related topics:
    see differential equations [fractional, for fields in dielectric media];
    fluctuations; Image Charge;
    paradigms in physics [hierarchical].
  > Specific solutions
    and phenomena: see electromagnetism [knotted solutions];
    green's functions; solitons;
    Thomson Scattering.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 8 dec 2019