|  Chern-Simons Field Theory | 
In General
  > s.a. topological field theories /  3D manifolds;
  Chern-Simons Function; graph invariants.
  * Idea: A topological
    field theory with action given by
  
* Use in gauge theories: One can define a state which satisfies \((E \pm {\rm i}B)\, \psi = 0\), the exponential (Kodama) state
\[ \psi^{~}_{CS} = \exp\{\pm\, 2\pi\, S^~_{\rm CS}/g^2\}\,.\]
  @ General references: Jackiw ln(89);
    Dijkgraaf & Witten CMP(90);
    Kanno LMP(90);
    Van Baal APPB(90);
    Grossmann pr(90);
    Deser mp/98-in [mathematics and physics];
    Zanelli AIP(08)-a0805  [uses];
    Freed a0808-conf,
    BAMS(09) [remarks];
    Alekseev & Mnëv CMP(11) [1D toy version];
    Pisarski a2103 [history, Jackiw].
  @ Books: Dunne 95 [self-dual];
    Hu 01 [Jones, Gromov-Floer, Donaldson, etc].
  @ Hamiltonian formulation: Banerjee & Chakraborty AP(96) [and fermions];
    Kim et al JPA(99)ht/98 [symplectic structure, constraints];
    Escalante & Carbajal AP(11)-a1107 [and Pontrjagin theory].
  @ Loops / braids: Awada MPLA(89),
    CMP(90);
    Smolin MPLA(89);
    Guadagnini PLB(90),
    et al NPB(90),
    NPB(90).
  @ Symmetries: Kim et al MPLA(98)ht [Lagrangian approach];
    Borowiec et al JPA(98) [and conservation].
  @ Solutions: Duval & Horvathy in(97)ht/03 [applications, vortices];
    Ivanova  & Popov JNMP(00)ht/99 [and symmetries];
    Horvathy & Zhang PRP(09) [vortices].
  @ With matter / sources: Boyanovsky PRD(90);
    Kohler CQG(95) [point particles as defects];
    Giombi et al EPJC(12)-a1110 [vector fermions].
Quantization
  > s.a. quantization of first-class constraints.
  @ General references: Dunne et al AP(89) [Schrödinger representation];
    Dunne & Trugenberger MPLA(89)
      [on Σg × \(\mathbb R\)];
    Danielsson PLB(89);
    Elitzur et al NPB(89);
    Killingback PLB(89);
    Ogura PLB(89) [path integral];
    Murayama ZPC(90);
    Labastida et al NPB(91);
    Witten CMP(91) [complex group];
    Buffenoir & Roche CMP(96)qa/95 [combinatorial];
    Guo & Zhao CTP(98)ht [quantization of coefficient];
    Gukov CMP(05)ht/03 [SL(2, \(\mathbb C\))];
    Meusburger & Schroers ATMP(03)ht,
    NPB(05)ht/03 [group G × g*];
    Constantinidis et al CQG(10)-a0907 [canonical, loop quantization];
    Guadagnini JPA(11)
      [perturbative equivalence of the path-integral formalism and the field operator approach].
  @ With sources: Buffenoir & Roche ht/05.
  @ Kodama state: Oda ht/03;
    Corichi & Cortez PRD(04)ht/03.
Chern-Simons Modified Gravity > s.a. 3D
    gravity; Topologically-Massive Gravity.
  * Motivation: One of
    the possible low-energy consequences of string theory is the addition of a
    Chern-Simons term to the standard Einstein-Hilbert action of general relativity.
  @ Reviews: Zanelli ht/05-ln,
    Hassaine & Zanelli 16 [Chern-Simons (super)gravity];
    Alexander & Yunes PRP(09)-a0907;
    Bergshoeff et al LNP(15)-a1402.
  @ General references: Alexander & Yunes PRD(08)-a0805 [and fermions];
    Bonora et al CQG(11)-a1105 [and spherical symmetry];
    Zanelli CQG(12)-a1208 [CS forms in gravitation theories];
    Díaz et al JPA(12)-a1311 [generalized action];
    Delsate et al PRD(15)-a1407 [dynamical Chern-Simons gravity, initial-value formulation];
    > s.a. parity [violation]; sources
    of gravitational radiation and space-based detectors.
  @ Black holes: Quinzacara & Salgado PRD(12)-a1401 [spherical];
    Vincent CQG(14) [rotating, vs Kerr black holes];
    Cárdenas-Avendaño et al CQG(18) [fourth constant of motion];
    > s.a. black-hole perturbations; black-hole phenomenology.
  @ Other phenomenology: Smith et al PRD(08) [effects on bodies orbiting the Earth];
    Konno et al PRD(08) [flat rotation curves];
    Garfinkle et al PRD(10)-a1007 [linear stability and speed of gravitational waves];
    Bhattacharyya & Shankaranarayanan PRD(19)-a1812 [gravitational wave polarization];
    > s.a. modified newtonian gravity [post-Newtonian formalism].
Related Topics
  > s.a. anomaly; bundle [gerbes];
  particle statistics; solitons.
  @ On manifolds with boundary: Park NPB(99)ht/98;
    Gallardo & Montesinos JPA(11)-a1008 [formulation as boundary field theory];
    > s.a. gauge theories.
  @ And knots / links: Witten NPB(89) [and integrable lattice models];
    Leal ht/99-conf;
    Buniy & Kephart ht/06 [Wilson lines and higher-order invariants];
    > s.a. knot invariants; knots in physics.
  @ Maxwell-Cherm-Simons theory: Kant & Klinkhamer NPB(05)ht [in curved spacetime];
    Blasi et al CQG(10)-a1002 [with boundary].
  @ And 3-manifold theory:
    Freed & Gompf PRL(91);
    Ivanova & Popov ht/01-proc [and cohomology].
  @ Higher-dimensional: Bañados et al NPB(96) [D > 2+1];
    Smolin ht/97 [11D, from M-theory];
    Barcelos-Neto & Marino EPL(02)ht/01 [generalized];
    Mišković et al PLB(05)ht [5D, canonical formalism];
    Izaurieta et al PLB(09)-a0905 [5D, and gravity];
    Gallot et al JMP(13)-a1207 [abelian, and their link  invariants];
    Camarero et al NPB(17)-a1706 [and supergravity];
    Tchrakian a1712-conf [in all dimensions].
  @ Discrete: Hu & Sant'Anna IJTP(04) [on a discrete space];
    Sun et al PRB(15)-a1502 [on arbitrary graphs].
  @ Deformations: 
    Bimonte et al PLB(97);
    Mukherjee & Saha MPLA(06) [non-commutative];
    Meusburger & Schroers NPB(09)-a0805
      [generalized, and \(\kappa\)-Poincaré symmetry];
    Kupriyanov EPJC(19)-a1905 [non-commutative].
  @ Other generalizations:
    Lemes et al PRD(99) [perturbed];
    Edelstein & Zanelli JPCS(06)ht [Chern-Simons-like (super)gravity in odd dimensions];
    Brito et al PLB(08)-a0709 [with Lorentz-breaking term];
    Engquist & Hohm FdP(08)-a0804 [higher-spin theories];
    Bandres et al JHEP(08)-a0807 [ABJM theory];
    Willison & Zanelli a0810 [on a cell complex];
    Kulshreshtha et al PS(09) [Chern-Simons-Higgs theory];
    D'Adda et al PLB(17)-a1609 [quaternion-based];
    Cremonini & Grassi a1912 [super-Chern-Simons theory].
  @ Other topics:
    Labastida & Ramallo PLB(89),
    PLB(89) [operator formalism];
    Killingback CQG(90) [non-semisimple];
    Müller-Hoissen NPB(90);
    Sonnenschein PRD(90);
    Park & Park PRD(98),
    IJMPA(09) [gauge-invariant];
    Khare in(00)ht/99 [2+1 fractional statistics];
    Muslih NPPS(02)ht [Hamilton-Jacobi];
    Borowiec et al IJGMP(06) [covariant Lagrangian].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 31 mar 2021