|  Laplace Equation and Laplacian Operator | 
In General > s.a. spectral geometry [quantum billiard].
  $ Def: The partial differential equation
∇2 u:= gab ∇a ∇b u = 0 .
  * Applications: Satisfied
    by the electrostatic potential in the absence of sources.
  * Solution methods: Separation
    of variables, possible in 11 (known) coordinate systems [@ Morse & Feschbach
    53, pp 509 & 655]; Holomorphic functions
    [@ in Panofsky & Phillips 62].
  * Relationships: A special case of
    Poisson equation, whose solutions are called harmonic or potential functions.
  @  Boundary-value problems: Minotti & Moreno JMP(90) [regions of \(\mathbb R\)2];
    Esposito NCB(99)ht/98,
    err NCB(00) [for square (∇2)2];
    Chechkin & Gadyl'shin mp/03 [perforated boundaries];
    Gibou & Fedkiw JCP(05) [Dirichlet boundary conditions, 4th-order discretization];
    Tatari & Dehghan PS(05) [disk, Adomian decomposition method];
    Yaseen et al a1208 [DJ iterative method for exact solution];
    > s.a. green function;  Neumann Problem.
  @ Related topics:
    Majic & Le Ru a1907 [new class of solutions].
  > In physics:
    see scalar field theories; klein-gordon fields.
  > Online resources:
    see MathWorld page;
    Wikipedia page.
Laplacian (Laplace-Beltrami) Operator
  > s.a. Boundary-Value Problems; D'Alembertian.
  $ Def: On forms, if d is the
    exterior derivative, and δ = (−1)p
    (*)−1 d
    (*), the operator
\(\square\):= −(δd + dδ) .
* For arbitrary coordinates: A useful expression is
∇2 f = |g|−1/2 ∂i(|g|1/2 gij ∂j f) .
  * On S2:
    The eigenvalues are l (l+1), each with a 2l + 1
    degeneracy; Alternatively, any eigenfunction is given in terms of a unique
    set of directions, Maxwell's multipoles, whose existence and uniqueness is
    known as Sylvester's theorem; > s.a. spherical
    harmonics.
  * On S3:
    The eigenvalues are −k (k + 2), each with a
    (k + 1)2 degeneracy.
  @ General references: Styer AJP(15)dec [geometrical significance of the Laplacian, and wave equation for a drumhead].
  @ On S2:
    Dennis JPA(04),
    JPA(05)mp/04 [Maxwell's multipoles].
  @ Spectrum: Ozawa CMP(84) [on bounded domain / random set of balls];
    Cornish & Turok CQG(98)gq [compact manifolds];
    Lehoucq et al CQG(02)gq [3D spherical spaces];
    Takahashi JGP(02) [and connected sums];
    Post mp/02,
    mp/02 [non-compact];
    Lachièze-Rey JPA(04)m.SP/04 [S\(^3\)];
    Dowker CQG(04) [on lens spaces];
    Lachièze-Rey & Caillerie CQG(05) [3D spherical spaces];
    Benguria & Linde mp/05 [hyperbolic space, bound on 2nd eigenvalue];
    Ammann & Humbert IJGMP(06) [first eigenvalue];
    Hu JMP(08)-a0805 [on homogeneous spaces];
    Ho DG&A(08) [1st eigenvalue, bound from curvature];
    Munteanu JDG(09) [1st eigenvalue, on Kähler manifolds];
    Cianchi & Maz'ya JDG(11) [non-compact Riemannian manifolds].
  @ Related topics: Ryan & Turbiner PLA(04)qp [conformal invariance and factor ordering];
    Fehér & Pusztai RPMP(08) [isometry-reduced, self-adjointness];
    Asorey et al IJGMP(15)-a1510 [topology and geometry of self-adjoint and elliptic boundary conditions];
    Franceschi et al PA(19)-a1708 [self-adjointness of sub-Laplacians];
    Greenblatt a2102 [on polygonal domains].
  > Online resources:
    see MathWorld page;
    Wikipedia page.
Generalizations and Similar Operators > s.a. electricity
  [network]; graphs and graph invariants.
  @ Discretization / on lattices: Zakrzewski JNMP(05)ht/04;
    Thampi et al JCP(13)
      [with isotropic discretization error, from lattice hydrodynamics];
    Sridhar a1501
      [asymptotic determinant of the discrete Laplacian].
  @ On other discrete structures: Lee in(85) [simplicial complexes];
    Begué et al Frac(13)-a1201 [Sierpiński carpet];
    Derfel et al JPA(12)-a1206 [fractals];
    Calcagni et al CQG(13)-a1208 [cellular complexes];
    Badanin et al a1301 [on periodic discrete graphs];
    Thüringen MG13(15)-a1302
      [abstract simplicial complexes, and expectation value of the heat kernel trace].
  @ For higher-spin fields: De Bie et al a1501;
    Eelbode et JPA(18)-a1706 [and some solutions].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 26 may 2021