|  Theories of Gravitation | 
Metric Theories
  > s.a. gravitation [gravitational theories in general, other types];
  higher-order and modified theories;
  non-local theories.
  * General relativity: Currently the
    standard theory of gravity; > see general relativity,
    its actions and variants.
  @ General references: Gupta RMP(57);
    in Schrödinger 63;
    De Alfaro et al NCB(80);
    Mann CQG(84),
    CQG(89);
    Capozziello & De Laurentis PRP(11)-a1108;
    Myrzakulov et al IJMPA(13)-a1302 [general aspects of modified gravity theories];
    Baykal EPJP(13)-a1310 [variational derivatives of actions];
    de Rham et al CQG(14)-a1311 [no new Lorentz-invariant ghost-free kinetic interactions in 4D];
    Sbisà PhD-a1406;
    Cayuso et al PRD(17)-a1706 [fixing the dynamics].
  @ With preferred frame: Petry GRG(79);
    Schmelzer gq/96,
    gq/96;
    Kohler GRG(00)gq/99 [semi-teleparallel];
    Eling & Jacobson PRD(04)gq/03 [dynamical];
    > s.a. einstein-æther gravity;
      hořava gravity; modified lorentz symmetry.
  @ Variable c: Magueijo PRD(00)gq,
    PRD(01)ap/00;
    > s.a. relativistic cosmology;
      variation of constants.
  @ Scale-invariant:  Kelleher CQG(04)gq/03,
    CQG(04)gq/03,
    PhD(03)gq [spatially];
    Verma gq/05;
    Darabi IJTP(10)-a0907;
    Jain et al CQG(11)-a1105 [with a scalar field, stability around FLRW models];
    Padilla et al PRD(14)-a1312 [generalized];
    Rinaldi EPJP(18)-a1808 [non-equivalence of Jordan and Einstein frames];
    > s.a. conformal gravity; Scale Invariance.
  @ Other: Visser GRG(98)gq/97 [background metric];
    Drummond gq/99 [variable lightcone];
    Anderson gq/99 [cosmological stress tensor];
    Magueijo & Smolin CQG(04)gq/03 ["doubly general"];
    Jackiw & Pi PRD(03)gq [with Chern-Simons-like term];
    Schuller & Wohlfarth NPB(04) [with bounds on sectional curvatures];
    Roscoe ap/04/CQG [relational];
    Deser CQG(06)gq [with non-degeneracy as field equation];
    Di Mauro et al IJGMP(10) ["further extended theories"];
    van de Meent PhD-a1111 [piecewise flat];
    Lin & Mukohyama JCAP(17)-a1708 [with 2 local degrees of freedom];
    Shuler EPJP(18).
  > Other theories: see born-infeld
    theory; gravitational constant [variable \(G\)];
    mach's principle; massive gravity;
    Relativistic Theory of Gravitation.
  > Modified frameworks:
    see finsler geometry; modified lorentz symmetry.
  > With additional variables:
    see bimetric theories; fifth force;
    Metric-Affine Theories; Mimetic Gravity;
    scalar-tensor theories; TeVeS.
Connection Theories > s.a. 3+1 connection formulation
  of general relativity; gauge theories of gravity.
  @ References:
    Jakubiec & Kijowski JMP(89) [non-symmetric];
    Aldrovandi et al gq/98v1;
    Alexandrov CQG(00)gq [SO(4, \(\mathbb C\)) lqg];
    Kaul & Sengupta PRD(12)-a1006,
    Sengupta JPCS(12) [with Nieh-Yan, Pontryagin and Euler topological terms];
    Minguzzi Symm(14)-a1403 [U(2) connection];
    Castillo-Felisola & Skirzewski RMF-a1410;
    Licata et al IJMMP(17)-a1706 [commutator algebra of covariant derivatives];
    Barbero et al JHEP(19)-a1906 [Pontryagin model on manifolds with boundary].
  > Related topics:
    see action for general relativity [Nieh-Yan density, etc]; Affine
    Gravity; BF theories; Topological Gravity.
Theories with Other Variables > s.a. einstein-cartan theory;
  newton-cartan theory; Non-Symmetric
  Gravity; Scalar Theory; string theory.
  * C-theory: A unified framework
    to study metric, metric-affine and more general theories of gravity.
  @ W-gravity: Hull CMP(93)ht/92;
    Castro JGP(00)ht/98 [from Fedosov quantization];
    Abreu et al PRD(02)ht.
  @ Spinors, Dirac operator: Landi & Rovelli PRL(97)gq/96,
    MPLA(98)gq/97,
    Landi gq/99-talk [eigenvalues];
    Holfter & Paschke JGP(03)ht/02 [moduli space, path integrals];
    Hebecker & Wetterich PLB(03)ht [higher-dimensional],
    Wetterich PRD(04)ht/03;
    Moffat gq/03 [and the cosmological constant];
    Novello gq/06 [gravity as effective theory];
    Carone et al CQG(19)-a1812 [interacting fermions with massless composite graviton].
  @ Scalar-vector theories:
    Goenner & Leclerc gq/00/PRD;
    Fleury et al JCAP(14)-a1406 [stability and causality].
  @ Scalar-vector-tensor:  Moffat JCAP(06)gq/05;
    Charmousis et al JHEP(12)-a1206 [higher-derivative];
    Heisenberg JCAP(18)-a1801;
    Kase & Tsujikawa JCAP(18)-a1805 [dark energy];
    Ghaffarnejad & Dehghani EPJC(19)-a1906 [galaxy rotation curves];
    Liu et al a1912 [gravitational waves];
    > s.a. black-hole thermodynamics; gravitomagnetism.
  @ Vector theories: Borodikhin G&C(11)-a0802 [and solar-system tests];
    Svidzinsky a0904 [vector theory, no black holes];
    Guendelman IJMPA(10)-a0911 [vector field giving dynamical time];
    Faddeev a0911 [10 vectors];
    Borodikhin a1104 [quantization, renormalizable];
    Svidzinsky PS(17)-a1511 [and dark energy],
    PS(17)-a1703 [gravitational-wave interferometer tests];
    Allen PRD(18)-a1801 [gravitational-wave detection].
  @ Vector-tensor theories: Yoshida & Shiraishi PS(91)-a1412 [and cosmology];
    Jiménez & Maroto JCAP(09)-a0811 [viability],
    PRD(09)-a0905 [cosmological evolution];
    Dale & Sáez ASS(12)-a1011 [viability];
    Gao PRD(12)-a1111 [generalized Lorentz gauge condition];
    Dale & Sáez PRD(14)-a1404 [cosmology];
    Exirifard a1404-GRF [with gauge fields];
    Dale et al ASS(15)-a1509 [horizons];
    Kimura et al JCAP(17)-a1608 [propagating degrees of freedom];
    Dale & Sáez JCAP(17)-a1610 [cosmology];
    Baker et al PRL(17)-a1710 [constraints from GW170817];
    Kase et al PRD(18)-a1711 [neutron stars];
    Kase et al PLB(18)-a1803 [extended].
  @ People with their own theories: Havel 03.
  @ Self-interacting spinor fields:
    Novello & De Lorenci MPLA(95);
    Sokołowski IGJMP(07)gq [and gravitational energy];
    Novello & Borba G&C(11).
  @ Higher-spin gravity: Bekaert et al RMP(12)-a1007;
    Boulanger & Sundell JPA(11)-a1102 [action principle];
    Sezgin & Sundell JHEP(12)-a1103 [geometry and observables];
    Setare & Adami NPB(16)-a1601 [spin-3 topologically massive gravity, conserved charges];
    Aros et al JHEP(18)-a1712 [FLRW];
    Arias et al a1712 [any dimensionality, dynamical two-form];
    Skvortsov et al a1805 [chiral theory];
    Sharapov & Skvortsov NPB(19)-a1901 [all formally consistent field equations];
    Tran a2008-PhD;
    > s.a. 2D gravity; 3D gravity.
  @ Torsion, non-metricity: Hammond GRG(99) [2-form, torsion];
    Beltrán Jiménez et al a1903;
    Alexander et al PRD(19)-a1905 [with dynamical cosmological constant];
    > s.a. affine connections [non-metricity].
  @ Other proposals:
    Alvarez et al PLB(92),
    PLB(93) [2-point distance];
    Østvang PhD(01)gq,
    G&C(05)gq/01,
    G&C(07)gq/02 [quasi-metric gravity];
    Mensky G&C(02)gq [in terms of paths in Minkowski space];
    Bengtsson MPLA(07)gq;
    Fernández & Rodrigues in(10)-a0909 [distorted Lorentz vacuum];
    Nash JMP(10);
    Trencevski et al IJTP(10) [antisymmetric tensor in Minkowski spacetime];
    Koivisto PRD(11) [C-theory, post-Newtonian approach];
    Böhmer &  Tamanini FP(13)-a1301;
    Krishnan a1409 [arbitrary-rank symmetric tensors].
  > Related topics: see Barker's Theory;
    differential geometry [area-metric spacetimes]; forms
    [volume form]; Designer Gravity; fractals
    in physics [multi-scale gravity]; Gauss-Bonnet Gravity;
    Ghost Fields; Hypergravity;
    lorentzian geometry [gravity analogs]; Matroids;
    non-commutative gravity; Supermanifolds;
    types of field theories [daor fields]; unified theories
    [including Weyl's]; Unparticles [ungravity]; Yilmaz Theory.
  > General relativity in different variables:
    see canonical general relativity;
    formulations of general relativity [including connection, embedding, null surfaces];
    lattice gravity; regge calculus.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 2 sep 2020