Formulations of General Relativity |

**As Minkowski Space Field Theory** > s.a. perturbations;
stress-energy pseudotensors.

* __Spin-2 field in Minkowski__:
Recast general relativity as a non-linear theory of the departure of the metric
from *η*_{ab};
This works at a linearized level, where one gets a spin-2 field theory, but such
theories cannot describe global features such as different spacetime topologies.

@ __References__: Ogievetsky & Polubarinov AP(65);
in Weinberg 72;
Penrose in(80),
in(82);
Weinberg & Witten PLB(80);
Castagnino & Chimento GRG(80)-a1206;
Zel'dovich & Grishchuk SPU(86);
Nikolić GRG(99)gq;
Straumann ap/00-conf;
Trenčevski IJTP(11)gq/04 [2-form field and non-linear connection];
Pitts & Schieve FP(04)gq [causality],
FP(03)gq/04 [FLRW
singularity];
Padmanabhan IJMPD(08)gq/04 [no-go results];
Notte-Cuello & Rodrigues IJMPD(07)mp/06 [Yang-Mills
type]; Nieuwenhuizen EPL(07)-a0704;
Pitts & Schieve TMP(07) [massive];
in Leclerc CQG(07)gq;
Hacyan a0712 [historical];
Baryshev AIP(06), a0809-proc [and tests];
Notte-Cuello et al JPM(10)-a0907; & Nambu, Feynman, Thirring;
Deser GRG(10) [and self-interactions];
Rodrigues RPMP(12)-a1109-conf [intro, and legitimate energy-momentum tensor]; Scharf a1208; > s.a. gauge
fixing; phenomenology of
gravity; theories of gravity.

**Metric and Other Variables** > s.a. einstein's
equation [including approximation schemes]; quasi-local formulation.

* __Degrees of freedom__: Electric and magnetic parts of the Weyl tensor.

* __Metric + connection version__:
The Palatini formulation of general relativity, or metric-affine gravity.

@ __Independent metric and connection__: Krasnov ht/06;
Tamanini PRD(12)-a1205 [metric + two affine connections]; > s.a. 1st-order
action [Palatini]; other
types
of
action.

**As a Theory of Null Surfaces** > s.a. 3D general relativity.

* __Variables__: Surfaces *Z*(*x*^{a}; *ζ*, *ζ**),
where *ζ* and *ζ** are stereographic coordinates on S^{2} and parametrize
the different null surfaces through each point (there is an S^{2} worth,
but only 9 are independent), and a conformal factor Ω.

* __And metric__: One can
construct explicitly a conformal metric and Ω from
the condition that *g*'_{ab} ∇_{a} *Z* ∇_{b} *Z* =
0 for all (*ζ*, *ζ**), and they satisfy *G*_{ab} =
0 or Λ*g*_{ab};
One naturally gets a complex *g*', but it is easy to impose reality.

* __Drawbacks__: The equations
are messy; Their nature (hyperbolic, elliptic?) is not known, and only some
non-local solutions are known; There is a large, not really understood, gauge freedom.

* __Quantization__: Might suggest to quantize only Ω, but not really
believed.

@ __References__: Kozameh et al AP(91);
Kozameh & Newman GRG(91),
in(91), et al JGP(92);
Iyer et al JGP(96)gq/95 [holonomies
and light cone cut functions]; Frittelli et al JMP(95)gq,
JMP(95)gq, JMP(95)gq,
JMP(95), PRD(97), JMP(00); Bordcoch et al a1201.

**Other Versions** > s.a. actions;
canonical [including ADM] and initial-value formulation; einstein's
equation; gravity
theories;
semiclassical gravity.

* __Motivation__: Look for hyperbolic formulation to show that evolution
is well-posed.

* __Euclideanized__: It has
no asymptotically Euclidean non-trivial solution in any dimension, with any
topology [@ in Witten CMP(81)].

@ __Theory of embeddings__: Deser et al PRD(76);
Regge & Teitelboim in(77); Gibbons & Wiltshire
NPB(87)ht/01;
Paston
& Franke TMP(07)-a0711 [canonical];
Faddeev
a0906 [action];
Paston
& Semenova IJTP(10)-a1003 [canonical,
constraint algebra]; Paston TMP(11)-a1111; Willison a1311 [Cauchy problem]; Sheykin & Paston AIP(14)-a1402; Paston et al G&C(17)-a1705 [canonical]; > s.a. branes; friedmann cosmology; quantum
gravity;
spherical symmetry.

@ __Group manifold__: D'Adda et al AP(85);
Regge PRP(86)-proc; Nelson & Regge IJMPA(89).

@ __Discretized versions__: Boström et al gq/93;
Regge & Williams
JMP(00)gq;
Castellani & Pagani AP(02)ht/01;
Gambini & Pullin in(03)gq/01;
Holfter & Paschke JGP(03)ht/02 [Dirac
operator]; > s.a. lattice gravity; regge
calculus.

@ __Elastic / plastic deformations__: Kokarev gq/02-GRF
[elastic bending of spacetime]; Fernández & Rodrigues 10 [distorted Lorentz vacuum]; > s.a. spacetime structure.

@ __Other variables__: Jadczyk IJTP(79)
[conformal structure + scalar density]; Teitelboim
NPB(93)
[theory of paths]; Grant CQG(96)gq/94 [volume-preserving vector fields];
Godina et al GRG(00)gq/99 [2-spinor + Dirac fields];
Novello JCAP(07)gq [two spinors];
Barnett a1412 [gravitational field tensor].

@ __Related topics__: Essén IJTP(90);
Bonanos JMP(91);
't Hooft NPB(91) [chiral];
Wallner JMP(95);
Anderson gq/99 [no need for metric];
Atkins a0803
[cohomological version, in terms of cochain complex of (*n*+2)-tensors];
Maharana a1004
['t Hooft's chiral alternative to the vierbein];
Gomes et al CQG(11)-a1010 [as a 3D conformally invariant theory]; Vey CQG(15)-a1404 [*n*-plectic vielbein gravity]; Adamo IJMPD(15)-a1505 [as a 2D CFT]; Hehl et al IJMPD(16)-a1607-conf [pre-metric formulation, and electromagnetism].

> __Other__: see 2D
gravity; 3D
gravity; 3D general relativity; affine connections [non-metricity]; Cartan Geometry; conformal
invariance; Ether; Faddeev Formulation; gravitational
thermodynamics; higher-dimensional gravity; Modified
Gravity [MOG]; modified
theories; Observers; quantum gravity; Shape Dynamics; simplex; teleparallel
theories [torsion]; unified theories; Weyl Space.

**Formalism, Techniques** > s.a. emergent gravity
[analog models]; complex structures; fluids;
geometry; hamilton-jacobi theory;
numerical general relativity.

@ __And global differential geometry__: Fischer & Marsden GRG(74);
Eguchi, Gilkey & Hanson PRP(80); > s.a. differentiable manifolds.

@ __Global methods__: Geroch GRG(71),
in(71);
Penrose 72;
> s.a. causality; singularities.

@ __Metric from geodesics__: Hojman & Rodrigues PLA(91);
> s.a. riemann tensor [*g*_{ab} from curvature].

@ __Related topics__: Szydłowski et al JMP(96)
[with Jacobi metric]; Marklund et al
gq/97-MG8 [non-holonomic, non-rigid frames for rotating matter]; Roček & van
Nieuwenhuizen gq/06 [smoothing,
models]; Boroojerdian IJTP(13)-a1211 [*z*-graded tangent bundle and geometrization of mass]; Struckmeier PRD(15)-a1411 [as en extended canonical gauge theory];
Dray 14 [differential forms];
Hilditch a1509 [dual foliation formulations];
Hardy a1608 [operational formulation];
Donoghue et al a1702 [as a quantum effective field theory].

main page
– abbreviations
– journals – comments
– other sites – acknowledgements

send feedback and suggestions to bombelli at olemiss.edu – modified 4 feb 2018