3-Dimensional Classical Gravity  

In General > s.a. 3D general relativity; 3D massive gravity; 3D quantum gravity.
@ General references: Blagojević & Cvetković PRD(10)-a1003 [conserved charges]; > s.a. bimetric gravity; lattice gravity; Scalar Theory.
@ Quadratic: Accioly et al JPA(01) [with Chern-Simons term], PLA(01), MPLA(01), PRD(03) [with Chern-Simons term]; Accioly & Dias MPLA(04) [unitarity]; > s.a. higher-order theories.
@ Without dynamics: Husain CQG(92) [without Hamiltonian constraint]; Escalante & Ochoa-Gutiérrez a1610 [canonical and symplectic analysis].
@ Other theories: Cornish & Frankel PRD(91); Waelbroeck NPB(91) [time]; Zanelli BJP(00)ht-ln [Chern-Simons gravity]; Bezerra et al gq/01 [Jackiw's]; Cacciatori et al PLB(02)gq [Einstein-AdS]; Arias & Gaitan FPC(09)-a0709 [self-dual spin-2 theory]; Escalante & Manuel-Cabrera AP(14)-a1308 [exotic action, Hamiltonian]; Bergshoeff et al PRL(13)-a1307 [zwei-dreibein action]; Boulanger et al JHEP(14)-a1312 [fractional-spin].
> Types of theories: see born-infeld theory; brans-dicke theory; Schouten Gravity; types of field theories [generally covariant].

Matter, Solutions and Phenomenology > s.a. gravitational collapse.
@ General references: Hellerman JHEP(11)-a0902 [with negative cosmological constant, maximum mass of excitation]; Meusburger AIP(09)-a1001, a1001-conf, GRG(11)-a1001-conf [holonomy and geometry reconstructed from measurements].
@ With topological matter: Gegenberg et al PLB(90); Mann & Popescu CQG(06)gq/05 [0-form and 2-form].
@ With other matter: Fernando GRG(02)gq [rotating dilaton solutions]; Özçelik et al a1611 [conformal scalar field].
@ Black holes: Yamazaki & Ida PRD(01) [Einstein-BI-dilaton]; Sousa & Maluf PTP(02)gq/03 [teleparallel]; > s.a. 3D black holes.

Chern-Simons Form, Topological Gravity > s.a. 3D general relativity; chern-simons theory; Metric-Affine Gravity; Topological Gravity.
* For vanishing cosmological constant: 3D general relativity, formulated as an ISO(2,1)-Chern-Simons gauge theory, which is integrable; If the phase space is chosen to be that of flat connections modulo gauge transformations, the theory is purely topological.
* For non-vanishing cosmological constant: For positive Λ, general relativity can be formulated as a SO(3,1) gauge theory, and for negative Λ, as a SO(2,2) gauge theory.
@ General references: Achúcarro & Townsend PLB(86); Roček & Van Nieuwenhuizen CQG(86); Teitelboim & Zanelli CQG(87); Holz CQG(88); Witten PLB(88); Bengtsson PRD(89); Myers NPB(90), PLB(90); Myers & Periwal NPB(90); Soda & Yamanaka MPLA(91); Birmingham & Rakowski GRG(93); Aliev & Nutku CQG(95)gq/98, CQG(96)gq/98; Meusburger & Schroers CQG(03)ht; Deser & Tekin CQG(03)gq [energy]; Park JHEP(08)-a0805 [degrees of freedom and gravitons]; Bergshoeff et al LNP(15)-a1402 [Hamiltonian form]; Merbis PhD(14)-a1411; Sarkar & Vaz a1706 [canonical]; Hajihashemi & Shirzad a1704 [Hamiltonian, vielbein formalism].
@ Quantization: Percacci AP(87).
> Related topics: see black holes in modified theories.

Conformal Gravity > s.a. Conformal Gravity / topological field theory.
* Action: In Chern-Simons form for connection defined in terms of dreibein; SO(3,2) gauge theory.
@ General references: Deser et al AP(82), PRL(82); Horne & Witten PRL(89); Mannheim in(91); Vaz & Witten NPB(92).
@ Related topics: García-Compeán et al PRD(00)ht/99 [self-dual].

Deformed and Other Modified Theories
@ General references: Mignemi IJMPA(05)ht/04 [deformed anti-de Sitter algebra, solutions]
@ Non-commutative: Valtancoli CQG(05)ht [with pointlike sources]; Schroers PoS(07)-a0711 [lessons learned].
@ Supersymmetric: Guadagnini et al PLB(90); Cvetković & Blagojević CQG(07)gq [with torsion]; Bergshoeff et al CQG(11) [massive 3D supergravity]; Alvarez et al CQG(15)-a1505 [with mass generation and effective cosmological constant]; Georgiou a1510 [higher-spin supergravity].
@ With torsion: Blagojević & Cvetković in(06)gq/04; González & Vásquez JHEP(11)-a0907 [and Chern-Simons term, solutions]; > s.a. gravitational radiation.
@ Higher-spin gravity: Mann & Popescu IJMPA(07)gq/06 [and higher-rank gauge theory]; Fujisawa & Nakayama CQG(13) [spin-3]; Burrington et al a1309 [and cosmological singularities]; Afshar et al PRL(13) [spin-3, in 3D flat space]; Honda et al a1511 [exact path integral].

main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 2 aug 2017