![]() |
In General > s.a. 2D manifolds;
2D quantum gravity; types of field theories.
* Remark: Any metric solves
the vacuum Einstein equation, so to get something interesting one has to
modify the theory slightly; General matterless models of gravity include
theories with a dilaton, arbitrary powers in curvature, or dynamical torsion;
They are a special class of "Poisson-sigma-models" whose solutions
are known completely, together with their general global structure; Besides
the ordinary black hole, arbitrary singularity structures can be studied.
* Solvability: All 2D models
of gravity – including theories with non-vanishing torsion and dilaton
theories – can be solved exactly if matter interactions are absent;
An absolutely conserved quantity determines the global classification of
all solutions; In the case of spherically reduced general relativity it
coincides with the mass in the Schwarzschild solution.
@ Overview: in Brown 88;
Gegenberg et al PRD(88);
Mohammedi pr(90);
Kummer gq/96;
Strobl Hab(99)ht/00.
@ Canonical form: Kummer & Lau AP(97)gq/96 [boundary conditions, quasilocal energy];
Constantinidis et al PRD(00)ht/99 [gauge fixing and reduced phase space];
Kiriushcheva et al MPLA(05)ht,
MPLA(05)ht,
Kiriushcheva & Kuzmin MPLA(06),
AP(06)ht/05 [canonical form of Einstein-Hilbert action];
Gambini et al CQG(10)-a0909,
comment Bojowald et al CQG(17)-a1706 [Ashtekar-type variables];
Gegenberg & Kunstatter a1504 [as modified Yang-Mills theory];
McKeon CJP(17)-a1607 [Palatini action, symplectic analysis].
@ Einstein-Hilbert theory: da Rocha & Rodrigues MPLA(06)ht/05,
comment Kiriushcheva & Kuzmin ht/06 [Lagrangian];
de Lacroix & Erbin GRG(20)-a1612 [with non-conformal matter, degrees of freedom].
@ AdS-cft, boundary field theory: Cadoni et al PRD(01)ht/00;
Cadoni & Carta MPLA(01)ht/01-in [dilaton].
@ Solutions:
Cooperstock & Faraoni GRG(95) [gravitational radiation];
Klösch & Strobl gq/97-MG8 [classification];
> s.a. 2D black holes; geons [kinks].
@ And matter: Ohta & Mann CQG(96)gq [with point particles, canonical reduction];
Ambjørn et al MPLA(97) [Ising matter];
Mann CQG(01)
[N particles, on S1];
Boozer PRD(10) [point particles].
@ Related topics: Deser FP(96)gq/95 [inequivalence of Palatini and metric forms];
Kummer & Tieber PRD(99)ht/98 [symmetries and conservation laws];
Boozer EJP(08) [toy model];
Bertin et al AP(10)-a0911 [general relativity, Hamilton-Jacobi constraint analysis];
> s.a. black-hole entropy [corrections]; entropy bounds.
Dilaton Theories
> s.a. dilaton; black holes; cosmic
censorship; semiclassical general relativity [limits of validity].
* Remark: One version can
be obtained from the spherical reduction of 4D general relativity.
@ General references:
Klösch et al HPA(96)gq;
Klösch NPPS(97)gq;
Grumiller et al AP(01)gq/00 [2 dilatons];
Alves & Bezerra IJMPD(00)gq [+ scalar];
Cavaglià AIP(98)ht,
PRD(99)ht/98,
Grumiller et al MPLA(01)gq/00 [matterless],
PRP(02) [rev, especially black holes];
Mignemi PLB(03)ht/02 [with torsion].
@ With particles: Rivelles NPPS(00)ht/99.
@ Related topics: Hayward CQG(93)gq/92 [censorship];
Cruz & Navarro-Salas MPLA(97) [free field theory equivalence];
Grumiller et al UJP(03)ht-in [triviality of κ-deformations];
Grumiller & Jackiw PLB(06) [duality].
Jackiw-Teitelboim Theory > s.a. 2D quantum gravity;
3D gravity [extension]; black holes.
* Field equations: Simply R = T.
@ General references: Teitelboim PLB(83),
in(84);
Jackiw in(84),
NPB(85);
Henneaux PRL(85);
Torre PRD(89);
Sikkema & Mann CQG(91);
Moayedi & Darabi JMP(01)gq/00 [with electromagnetism];
Cadoni & Mignemi GRG(02)gq [cosmology];
Constantinidis et al CQG(08)-a0802 [canonical analysis];
Alkalaev JPA(14) [higher-spin extension];
Moitra et al a2101 [second-order formalism].
@ As a BF theory: Cabrera a2001 [Faddeev-Jackiw and canonical analysis];
Wieland a2003
[twistor representation for the boundary charges].
@ With cosmological constant: Brigante et al JHEP(02)ht;
Maldacena et al a1904.
@ Other solutions: Mann & Ohta CQG(00)gq/01 [2-body];
Reyes JPA(06) [solitons].
Other Theories
> s.a. emergent gravity [entropic]; Liouville
Theory; Matrix Models; supergravity;
topological field theories.
@ Topological gravity:
Rajeev PLB(82) [quantum, solution];
Li PRD(86),
NPB(90) [W-gravity];
Labastida & Pernici PLB(88) [Lagrangian];
Labastida et al NPB(88);
Chamseddine & Wyler PLB(89),
NPB(90);
Witten NPB(90).
@ Topological gravity with matter:
Killingback PLB(91),
PLB(91).
@ Higher-derivative: Schmidt JMP(91);
Schmidt GRG(99) [and Einstein-dilaton];
Ahmed a1112 [f(R) theories];
> s.a. black holes.
@ Quadratic with torsion: Grosse et al JMP(92)ht;
Katanaev et al PRD(96)gq/95 [relation to dilaton];
Mignemi AP(97)gq/95 [Riemann-Cartan].
@ Supergravity: Ertl et al NPB(98)ht/97.
@ Discrete, Lorentzian triangulations:
Di Francesco et al NPB(00) [and random walks],
NPB(01)ht/00 [and Calogero Hamiltonian];
@ Non-commutative: Cacciatori et al CQG(02)ht;
Balachandran et al CQG(06)ht [in terms of non-commutative gauge theories].
@ More theories:
Schaller & Strobl ht/93 [with torsion];
Amelino-Camelia et al PRD(96)ht [string-inspired, and Yang-Mills theory];
Obukhov PRD(04)gq/03 [metric-affine];
Frolov et al GRG(10)-a0901 [algebraic analysis];
Klusoň PRD(12)-a1110 [massive gravity, Hamiltonian analysis].
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu &ndash modified 19 may 2021