Gravitomagnetism |
In General
> s.a. duality; formulations of canonical general relativity;
newtonian gravity; stress-energy pseudotensor.
* Idea: Originally,
a prerelativistic theory of gravity proposed in 1893 by Oliver Heaviside,
based on an analogy between Maxwell's theory of electromagnetism and gravity;
It is a flat-space, linear theory with no self-interaction, but the retardation
of the field due to the speed of light is taken into account; In the current view,
it is a special-relativistic theory that arises in the slow-motion, weak-field
approximation of general relativity.
* Field equations: The analogs of
Maxwell's equations are (H = constant introduced by Heaviside, such that
(G/H)1/2 = c)
∇ · g = −4πG ρ , ∇ × g = −∂h/∂t , ∇ · h = 0 , ∇ × h = −4πH ρ v + (H/G) ∂g/∂t .
@ Reviews:
Jantzen et al in(96)gq/01;
Bini & Jantzen gq/00-proc [references],
NCB(00) [rev];
Ruggiero & Tartaglia NCB(02)gq;
Mashhoon in(07)gq/03 [and Larmor theorem];
Schäfer GRG(04)gq-in [rev];
Iorio ed-06;
Bakopoulos a1610-MS;
news cosmos(19)sep [effects].
@ General references: Heaviside Electr(1893);
in Heaviside 1894;
Thirring ZP(18);
Bedford & Krumm AJP(85)sep;
Wheeler IJMPA(88) [conceptual];
Thorne in(88);
Harris AJP(91)may [slow motion, weak field equations]; & Schutz;
Maartens & Bassett CQG(98)gq/97 [general formalism];
Clark & Tucker CQG(00)gq [perturbative];
Pascual-Sánchez NCB(00)gq [harmonic gauge];
Mashhoon gq/00-proc;
Tartaglia & Ruggiero EJP(04)gq/03 [vs electromagnetism];
Wu CTP(05)gq [in gauge theory of gravity];
Maartens GRG(08) [non-linear];
Malekolkalami & Farhoudi MPLA(09)gq/06;
Li a1012 [beyond linear order];
Costa & Natário GRG(14)-a1207 [analogies with electromagnetism];
Nouri-Zonoz & Parvizi GRG(16)-a1406 [Papapetrou field];
Costa et al a1603
[intrinsic/extrinsic gravitomagnetism and curvature scalar invariants];
> s.a. riemann tensor [differential-geometric].
@ Quantum theory: Santos & Khanna IJMPA(16)-a1605 [at finite temperature].
Effects, Phenomenology > s.a. maxwell fields in curved spacetime.
* Idea: Gravitomagnetic fields arise from
moving matter, like magnetic fields from moving charges, or from distributions of gravitomagnetic
monopoles, if they exist (this requires torsion); They do not arise in scalar gravity.
* Clock effect: A deviation
from Kepler's third law for a particle in orbit around a (slowly) spinning body,
such as a typical planet or star, in the weak-field and slow-motion approximation
of general relativity; i.e., a change in the period of revolution of clocks;
> s.a. Wikipedia page.
* Other examples: Precession of
planetary orbits (not a good test); Precession of gyroscopes; These effects arise
in a post-Newtonian, special relativistic treatment of gravitation.
@ General references: Nordtvedt gq/02 [from special relativity + equivalence principle];
Shen gq/03 [and quantum mechanics];
Mashhoon CQG(08)-a0802 [time-varying fields].
@ Observation: Ahmedov & Rakhmatov FP(03)gq [in electromagnetic systems];
Kopeikin IJMPD(06)gq/05 [based on PPN expansion];
Ciufolini a0704 [lunar laser ranging and satellites];
Ruggiero & Tartaglia EPJP(19)-a1810 [satellite-based tests].
@ Clock effect:
Mashhoon et al AdP(99)gq/98,
LNP(01)gq/99,
PLA(01)gq;
Bonnor & Steadman CQG(99);
Semerák CQG(99) [extremely accelerated observers];
Tartaglia GRG(00)gq;
Lichtenegger et al ASR(00),
ASR-gq/01;
Bini et al CQG(01)gq/00;
Bini & Jantzen gq/01-in;
Iorio CQG(01)gq/00,
et al CQG(02)gq/01,
Tartaglia & Ruggiero gq/01 [neutron interferometry];
Lichtenegger et al AdP(06)gq/02-conf;
Faruque PLA(04) [spinning particle in Kerr];
Iorio & Lichtenegger CQG(05) [Earth space-based];
Hackmann & Lämmerzahl PRD(14)-a1406 [generalized];
Faruque et al a1502 [in quantum mechanics];
> s.a. tests of general relativity.
@ On quantum systems: Camacho IJMPD(01)gq/00 [spin-1/2 systems];
Adler & Chen PRD(10)-a0912 [spin-0 particle in electromagnetic + weak gravitational field].
@ Extrinsic gravitomagnetism: Kopeikin & Fomalont GRG(07)gq/05,
Kopeikin IJMPD(06) [and light deflection].
@ Other effects: Pascual-Sánchez gq/99-in;
de Matos & Tajmar IJP(01)gq/00 [gravitomagnetic Barnett effect];
Tartaglia & Ruggiero gq/01 [rotating mass and light];
Flanders & Japaridze IJTP(02)gq/01 [interaction between moving objects];
Mashhoon IJMPD(05)ap [critical speed];
Mitskievich & López Benítez a0707-MGXI [Zeeman-type];
Bini et al CQG(08)-a0803 [gravitational induction];
Chicone & Mashhoon PRD(11)-a1005 [and astrophysical jets],
PLA(11) [gravitomagnetic accelerators];
Ruggiero IJMPD(15)-a1502 [effects of massive rings],
ASS(16)-a1507 [gravitomagnetic fields of rotating rings];
Cashen et al PRD(17)-a1610 [gravitomagnetic dynamical friction];
Crişan et al Univ(21)-a2103 [knot solutions].
> And tests of general relativity:
see gravitational phenomenology; tests
with orbits [frame dragging, geodetic precession] and with light.
> Other effects:
see gases [ultracold boson gases]; Tajmar Effect;
Thomas Precession.
Related Topics
> s.a. theta sectors [torsion-induced].
@ Tidal tensor approach:
Costa & Herdeiro IAU(09)-a0912 [limitations of electromagnetic analogy];
Voicu JNMP(12)-a1111 [geometric version].
@ Specific spacetimes: Bini et al CQG(03)gq [Kerr-Newman-Taub-NUT],
PRD(03)gq [Kerr-Taub-NUT];
Kerr et al CQG(03)gq [with cosmological constant];
> s.a. modified kerr solutions [Kerr-de Sitter].
@ In teleparallel gravity: Spaniol & de Andrade IJMPD(10)-a0802;
Ming et al IJMPD(17)-a1712 [alternative approach].
@ In other theories:
Nayeri & Reynolds ht/01 [brane effects];
Camacho GRG(02)gq;
Barros & Romero IJMPA(05) [Brans-Dicke];
Iorio & Ruggiero JCAP(09)-a0810 [f(R) theories];
Bailey PRD(10)-a1005 [Lorentz-violating];
Exirifard JCAP(13)-a1111 [tensor-vector-scalar theory];
Tasseten & Tekin PRD(16)-a1506 [massive gravity];
Madriz & Montes a1703 [scalar-tensor gauge theory of gravity];
Exirifard IJMPD(19)-a1906 [Scalar-Vector-Tensor theory, MOG];
> s.a. non-local gravity.
@ Related topics: Lynden-Bell & Nouri-Zonoz RMP(98)gq/96 [monopoles];
Shapiro PRL(96)
+ pn(96)nov [and LIGO];
Maartens et al CQG(02)gq/01 [and holonomy];
Ghose a0905 [and relativistic particles];
Malekolkalami & Farhoudi IJTP(14)-a1311 [and non-commutative geometry].
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 1 mar 2021