Gauge Theories of Gravity  

In General > s.a. gauge theory; gravity / higher-order theories; linearized gravity; supersymmetric field theories.
* Idea: The variables are gauge fields in flat spacetime, a tetrad (translational potential) and a connection (rotational potential).
* In terms of symmetry breaking: The n-dimensional general relativity symmetry group GL(n, \(\mathbb R\)) is broken to the Lorentz group.
@ General references: Utiyama PR(56); Thirring AP(60), APA(78); Kibble JMP(61); Yang PRL(74) [and Guilfoyle & Nolan GRG(98)gq]; Asorey & Boya IJTP(79) [observational difference with respect to the electromagnetic case]; Lenzen GRG(85) [quadratic S]; Dehnen & Ghaboussi PRD(86); Ghaboussi et al PRD(87); Frønsdal JGP(90); Hecht et al PRD(91); Hehl et al PRP(95)gq/94; Wu et al ht/02; Sardanashvily TMP(02)gq; Chamseddine IJGMP(06)ht/05 [rev]; Vignolo et al IJGMP(06) [general relativity as constrained gauge theory]; Randono a1010 [forward-looking introduction]; Cattaneo & Schiavina a1707 [reduced phase space].
@ Books, reviews: Ivanenko & Sardanashvily PRP(83); Gronwald & Hehl gq/96-ln [rev]; Blagojević 01; Sardanashvily gq/02; Blagojević gq/03-ln; Tiemblo & Tresguerres RRDP-gq/05 [non-linear framework]; Sardanashvily IJGMP(06)gq/05 [geometric], IJGMP(11)-a1110; Hehl a1204; Blagojević & Hehl a1210, 13 [intro and reprint volume]; Nester & Chen IJMPD(16)-a1604-proc [and phenomenology].
@ As a diffeomorphism-invariant gauge theory: Cho et al PLB(92); Krasnov PRD(11)-a1101 [and perturbative quantisation], PRS(12)-a1202 [rev].
@ Gravity and Yang-Mills theory: Baulieu ht/00-talk [supersymmetric gauge theory]; Ananth IJMPD(10)-a1009.
@ With matter couplings: Kerr a1408 [ISO(n) theory].
@ Solutions: Francis & Kosowsky gq/03-wd; Wu & Zhang gq/05 [and tests]; Blagojević & Cvetković PRD(16)-a1510 [black holes, conformally flat].
@ Related topics: Tresguerres IJGMP(13)-a1202 [description of motion]; Borsten & Duff PS(15)-a1602 [symmetries of gravitational theories as originating from those of "Yang-Mills squared"].
> And quantum gravity: see covariant quantum gravity [relationship with gauge theory].

Different Versions
@ Lorentz group: Carlevaro & Montani a0903-proc; Cho IJMPA(09) [abelian decomposition]; Pak et al PRD(12)-a1112 [as a model of emergent gravity].
@ Poincaré group: Edelen IJTP(85), IJTP(85), IJTP(85), IJTP(85), IJTP(86); Edelen IJTP(89); López-Pinto et al CQG(97)gq/96 [Hamiltonian]; Batakis gq/97; Blagojević AdP(01)ht/00 [and teleparallel]; Yo & Nester IJMPD(02)gq/01 [Hamiltonian]; Leclerc PRD(05)gq [teleparallel limit]; Frolov G&C(04)gq/05 [foundations]; Obukhov IJGMP(06)gq; Leclerc IJMPD(07) [second-order formalism]; Minkevich APPB(09)-a0808; Ali et al IJTP(09)-a0907 [rev]; Banerjee et al PRD(10) [symmetry generators]; Kaźmierczak a1010-MG12 [with coupled fermions, and the Immirzi parameter].
@ Self-dual: Kerr a1504 [Hamiltonian analysis]; Krasnov a1610.
@ SL(2, C): Nissani PRP(84); Carmeli et al 90; Carmeli & Malin IJTP(98) [quantum].
@ SO(3): Mattes PhD(90)gq/03; Kaul PRD(06)gq [complex SU(2), and supergravity].
@ SO(D+1): Botta Cantcheff GRG(02)gq/00 [with cosmological constant and torsion].
@ SO(4,1): MacDowell & Mansouri PRL(77) [with Λ > 0]; Randono CQG(10)-a1005 [spontaneously broken local de Sitter symmetry]; Sobreiro et al a1210-conf [and anti-de Sitter].
@ SO(4. 2): Anabalón et al JPA(08); Gegenberg et al PRD(16)-a1505 [and infrared modification of gravity].
@ SL(5, R): Mielke PLB(11) [spontaneous breaking, and weak equivalence principle].
@ Other: Wallner PRD(90), Mielke PLA(90) [new variables]; Gaitan gq/01; Bertolini IJMPA(03)ht-ln; Wu CTP(04)ht/03 [shielding effect]; Hestenes FP(05) [with geometric calculus]; Hsu IJMPA(06)-a1102; Cuzinatto et al ASS(11)-a0712 [second-order, and acceleration]; Hsu IJMPA(09)-a1005, Martín-Martín & Tiemblo IJGMP(10) [gauge theory of translations]; Maluf & Faria AdP(12)-a1203 [teleparallel]; Lasenby & Hobson JMP(16)-a1510 [scale-invariant]; Sardanashvily IJGMP(16)-a1602-conf [gravity as a Higgs field].
> Related topics and phenomenology: see FLRW spacetimes; higgs mechanism; gravitational phenomenology; torsion in physics; unified theories.


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 18 jul 2017