|  Types of Wave Equations and Solutions | 
Forms of the Wave Equation > s.a. Fermat's
  Principle; huygens principle; quantum
  field theory in curved spacetime.
  * General form: In
    its most general form, a linear wave equation can be written as
∇2φ − v−2 ∂t2φ + a · ∇φ + b ∂tφ + cφ = f(x, t) or ∇2φ − v−2 ∂t2φ = 0 ,
    where v (speed), a, b (diffusion), and
    c (mass) depend on the medium, and f is a source; The
    second form is for a homogeneous, non-conducting medium without sources.
  * Remark: It can always
    be put in normal form.
  * Exactly solvable: One whose
    general solution is a finite sum of progressing waves of finite order:
φ = ∑n=0∞ hn(u,v) dna(z) / dzn , z = u or v .
  * Boundary conditions: Solid wall
    (v⊥ = 0); Free surface p
    = 0; > s.a. boundaries in field theory.
  @ General references: Greiner 90;
    Kitano PRA(95)qp [1D propagation].
  @ Related topics: Torre JMP(03)mp,
    JMP(06)mp [helically reduced];
    Vasy AM(08) [singularities on manifolds with corners];
    > s.a. toda lattice.
  > Generalized backgrounds: see
    waves [in curved spacetimes]; dynamics of causal sets.
Special Types of Solutions > s.a. computational physics;
  spectral geometry; special relativity
  [wave fronts]; wave phenomena [tails, negative frequencies].
  * Plane waves: Characterized
    by one wave vector k and frequency ω, of the
    form φ(x, t)
    = (Re) A exp{i(k·x − ωt)}.
  * Progressing / traveling waves:
    The ones that move without changing shape, of the form φ(x, t)
    = F(x−vt).
  @ Solutions: Varlamov IJTP(03)mp/02;
    Bičák & Schmidt PRD(07)-a0803 [wth helical symmetry].
  @ Traveling waves: Ward CQG(87);
    Rodríguez et al JPA(90) [1+1, stability];
    Rodrigues & Lu FP(97)ht/96 [existence];
    Hu PLA(04)
    and PLA(04)
      [coupled non-linear differential equations];
    Sirendaoreji PLA(06) [non-linear equations];
    Bazeia et al AP(08) [solution-generating method];
    Fernández a0902 [non-linear equations];
    Khater et al RPMP(10)
      [using the mapping method and the extended F-expansion method];
    Alekseev CQG(15)-a1411 [expanding spatially homogeneous spacetimes];
    > s.a. Gross-Pitaevskii Equation.
  @ Finite-order progressing waves:
    Couch & Torrence PLA(86);
    Torrence JPA(90) [acoustic equations];
    Bombelli & Sonego JPA(94)mp/00.
  @ Evanescent waves: Kleckner & Ron qp/98;
    Voigt et al PRA(00)qp/99 [radiation pressure];
    Papathanassoglou & Vohnsen AJP(03)jul;
    Thio AS(06) [and data storage];
    Wang & Xiong PRA(07) [superluminality];
    Nimtz & Stahlhofen NS-a0708,
    comment Winful a0709
      [as classical analogs of virtual particles, and Lorentz violation];
    > s.a. Virtual Particles.
  @ Non-radiating: Friedlander PLMS(73);
    Kim & Wolf OC(86);
    Gamliel et al JOSA(89);
    Berry et al AJP(98)feb.
  @ Rogue waves: 
    Akhmediev et al PLA(09);
    Onorato et al PRL(11)
    + news pw(11)oct;
    Bayındır & Ozaydin a1701 [and quantum Zeno dynamics].
  @ Related topics: Couch & Torrence JPA(93) [equations with exact spreading solutions];
    Hasse et al CQG(96) [caustics, in general relativity];
    Kempf JMP(00) [superoscillations];
    Kaiser in(05)mp/04 [eigenwavelets];
    Okninski a1704
      [non-standard solutions, involving higher-order spinors and describing decaying states];
    > s.a. Shock Waves.
Types of Wave Equations > s.a. analysis [fractional];
  green functions; Gross-Pitaevskii Equation;
  Helmholtz Equation; light;
  quaternions; sound.
  * Acoustic equation: Often written
    as c2(x, t)
    wxx
    = wtt,
    with c(x, t) the speed of sound; The general form is
ρ φ, tt = ∇·(p∇φ) − qφ + F(x, t) ,
    where the functions ρ, p and q depend on the
    medium and F(x, t) is an external perturbation.
  * Electromagnetic:
    If μ = magnetic permeability, ε = dielectric
    constant, and σ = conductivity, the scalar potential obeys
∇2φ − με ∂t2φ − μσ ∂tφ = −ρ/ε .
  @ Non-linear: Foursov & Vorob'ev JPA(96) [utt =
      (uux)x];
    Kneubühl 98;
    Infeld & Rowlands 00 [solitons, chaos];
    Chugainova TMP(06) [with dispersion and dissipation];
    Grochowski et al a1611
      [bifurcations and non-linear spectral problem].
  @ Solvable: Friedlander PCPS(47);
    Degasperis & Tinebra JMP(93),
    Barashenkov et al JMP(93),
    JMP(93) [relativistic].
  @ Other types: Couch & Torrence JPA(95) [2D, wave-splitting approach]; 
    Bizoń et al Nonlin(10)-a0905 [cubic].
  @ Generalizations: Barci et al IJMPA(95) [4th-order, tachyons].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 3 jan 2021