|  Neutrinos | 
In General
  > s.a. particle physics and types
  of particles / neutrino detectors and applications.
  * History: 1930, Existence predicted
    by Pauli, who called it "neutron"; 1933 (after Chadwick's discovery of
    the n), it became Fermi's "neutrino"; 1938, H Bethe, nuclear
    reaction in the Sun; 1953, νe
    discovered by Reines & Cowan; 1962, First neutrino beam at BNL and
    νμ discovered; 1969, Gribov
    and Pontecorvo's solution of solar neutrino puzzle, elaborated on later by Wolfenstein
    and Mikheyev & Smirnov; 1975, ντ
    discovered by Perl; 1989, There are only 3 light neutrinos (m <
    mZ/2), from the Z line shape;
    1998, Evidence for oscillations from Super-Kamiokande; 2002, Evidence reported for
    neutrinoless double-β decay 2n → 2p + 2e
    (implies lepton number violation, mν
    value); 2003, They are candidates for hot dark matter but cannot account for most of
    the dark matter even if massive, because of constraints from large-scale structure;
    2016, Neutrino research a growing field, with expectation that neutrinos hold the key to
    expanding the standard model; 2018, MiniBooNE data are incompatible with oscillations
    involving just the three known neutrino flavors.
  * Interactions: With a q,
    it can exchange a W (charged current, ν turns into an e
    or μ, as in νe
    + d → p + n + e), or a Z (neutral
    current, ν remains, as in ν + d → p
    + n + ν ); can be used to measure the weak mixing angle.
  * Open issues: Do νs and
    ν-bars have the same masses? If not, this could signal CPT violation;
    Are neutrinos Dirac or Majorana spinors? Confirmation of neutrinoless double-beta decay
    would imply that they are their own antiparticles, and therefore Majorana particles;
    > s.a. neutron.
  @ History:  Franklin PT(00)feb;
    Bilenky phy/01,
    MPLA(04) [and status];
    Pietschmann phy/06-ln;
    # B Pontecorvo;
    focus Phy(07)
      [1953 νe discovery];
    Zralek APPB(10)-a1012-ln;
    Steinberger AP(12);
    focus Phy(15)
      [1962 νμ discovery];
    Rajasekaran a1606;
    Recami HJ-a1712 [Majorana];
    Blondel a1812-conf
      [ντ];
    Goodman a1901-proc ["mistakes"];
    Ramond a1902-conf;
    Rodriguez a1907-conf.
  @ Books: Sutton 92;
    Winter 00;
    Giunti & Kim 07;
    Zuber 11 [r CP(12)#1,
    e1 PT(05)apr].
  @ General references, reviews: Witten TPT(83)feb [masses, detection];
    Sarma IJMPA(95);
    Reines RMP(96);
    Haxton & Holstein AJP(00)jan,
    AJP(04)jan;
    Akhmedov NPPS(01);
    González-García & Nir RMP(03)hp/02;
    Roulet ap/04-ln [phenomenology];
    Aničin phy/05-in;
    Maricic & Learned CP(05) [specially oscillations];
    Wark pw(05)jun;
    Strumia & Vissani hp/06;
    Xing IJMPA(08);
    Winter NPPS(10);
    Brugnera IJMPA(11);
    Barger et al 12;
    Zukanovich Funchal et al a1308-ln;
    Lincoln & Miceli TPT(15);
    Aguilar-Arevalo & Bietenholz RCF-a1601;
    news pt(16)aug [excitement about neutrino physics];
    Spurio GdF-a1609;
    Goodman AJP(16)dec [RL];
    Kopp Phy(18)
      [viewpoint on 4th neutrino status];
    news APS(19)may [status].
Masses > s.a. mixing and oscillations;
  types of neutrinos [including Dirac vs Majorana, and superluminal].
  * Theory: Theoretical values are
    largely unknown; In the standard model, all neutrinos are massless, but we know from
    oscillations that (at least two) have non-zero masses; GUTs require non-zero masses, but
    they don't predict their values; However, oscillation experiments only probe differences
    between squared masses, and do not give values for individual masses; The "neutrino mass
    hierarchy problem" is the question whether m2
    is lighter than m3 (normal hierarchy) or heavier
    (inverted hierarchy).
  * Bounds on masses: 1998, The neutrino is not
    massless, based on evidence for neutrino oscillations; 2010, Galaxy survey gives that the
    sum of all neutrino masses < 0.28 eV (95% CL) in flat ΛCDM cosmology; 2019, KATRIN
    (Karlsruhe Tritium Neutrino) experiment gives 1.1 eV as upper bound on the neutrino mass
    [cosmos(19)sep;
    Brugnera Phys(19)]; 2021, new KATRIN bound is 0.8 eV
    [sn(21)apr].
  @ General references:
    Wolfenstein CP(96);
    Zuber PRP(98),
    Valle hp/98-proc [rev];
    Divakaran & Rajasekaran MPLA(99) [proposal];
    Akhmedov NPPS(00)hp [seesaw];
    Bilenky et al PRP(03);
    McKeown & Vogel PRP(04) [and oscillations];
    Giedt et al PRD(05)ht [string theory];
    King CP(07) [rev];
    news pw(10)jun
      [evidence for different neutrino and antineutrino masses];
    Simpson et al JCAP(17)-a1703 [strong evidence for the normal hierarchy].
  @ And cosmology:
    Elgarøy et al PRL(02) [2dF];
    Kainulainen & Olive ap/02;
    Abazajian & Dodelson PRL(03) [weak lensing];
    Elgarøy & Lahav JCAP(03) [2dF and WMAP];
    Hannestad PRD(02),
    JCAP(03) [WMAP & 2dF],
    & Raffelt JCAP(04);
    Kaplinghat et al PRL(03) [cmb];
    Tegmark et al PRD(05)ap/03 [anthropic];
    Brandenberger et al PRD(04) [robustness];
    Crotty et al PRD(04);
    Lesgourgues et al PRD(04) [redshift surveys];
    Ichikawa et al PRD(05) [cmb only];
    Melchiorri et al NPPS(05)ap;
    Kahniashvili et al PRD(05)ap,
    Wang et al PRL(05)ap [galaxy cluster surveys];
    Hannestad PRL(05)ap [and dark energy equation of state],
    & Raffelt JCAP(06)ap-in;
    Slosar PRD(06)ap;
    Goobar et al JCAP(06);
    Lesgourgues & Pastor PRP(06);
    Elgarøy NPPS(07)hp/06;
    Zunckel & Ferreira JCAP(07);
    De Bernardis et al PRD(08)-a0809,
    PRD(09)-a0907;
    Banhatti a0901 [bounds, and equivalence principle];
    Kawasaki & Sato PTP(09)-a0907;
    Sekiguchi et al JCAP(10)
      [and high-accuracy measurement of the Hubble constant];
    Thomas et al PRL(10)
    + Lesgourgues Phy(10) [galaxy surveys];
    Hannestad PPNP(10)-a1007 [rev];
    Jose et al PRD(11) [from high-redshift galaxy luminosity functions];
    Shimon et al MNRAS(12)-a1201 [SZ surveys];
    Hamann et al JCAP(12)-a1209 [galaxy surveys];
    Lesgourgues & Pastor AHEP(12)-a1212;
    Burenin AL(13)-a1301;
    Battye & Moss PRL(14) [cmb and lensing];
    Wolk a1503,
    Gerbino et al PRD(16)-a1507,
    Huang et al EPJC(16)-a1512 [improving constraints];
    Vagnozzi et al PRD(17)-a1701;
    Couchot et al A&A(17)-a1703;
    Wang et al ChPC(18)-a1707.
  @ And supernovae:
    Lunardini & Smirnov JCAP(03);
    Dighe et al JCAP(03) [IceCube].
  @ Theory: Arkani-Hamed et al PRD(02)
      [higher-dimensional, 10−1–10−4 eV];
    Mohapatra NJP(04) [rev];
    Berezinsky et al JHEP(05) [and low-scale gravity];
    Lambiase et al CQG(06)gq/05 [lower bound, geometric quantum mechanics and SN1987A];
    Sharatchandra a0710 [from quantum gravity attractions];
    Mavromatos a1506-conf
      [unconventional scenarios, Lorentz-symmnetry violation and torsion];
    Dvali & Funcke PRD(16)-a1607 [from a gravitational θ term];
    Asselmeyer-Maluga & Król MPLA(19)-a1801 [and exotic smoothness];
    Carneiro a1811 [from minimal length];
    > s.a. standard model; non-commutative gauge theories.
Other Properties and Processes
  > s.a. Fluorine.
  @ Magnetic dipole moment:
    Vysotsky MPLA(03) [theory];
    MUNU Collaboration PLB(03) [exp];
    Bell IJMPA(07),
    Novello & Bittencourt IJMPA(14)-a1111 [theory];
    Viaux et al A&A(13)-a1308 [and the globular cluster M5].
  @ Neutrinoless double-beta decay: Feder PT(10)jan;
    Bilenky & Giunti MPLA(12) [rev];
    news sn(18)feb [experiments];
    Engel & Vogel Phy(18).
Theoretical Issues and Other Topics > s.a. composite models;
  matter; neutrinos in astrophysics;
  spin-statistics; Superfluids.
  @ Propagation: Elizalde et al PRD(04)hp [strongly magnetized media];
    Kuznetsov et al PRD(06) [dispersion in external magnetic field];
    Bravo & Sahu MPLA(07) [in media, self-energy corrections];
    Millhouse & Latimer AJP(13)sep [through matter];
    Vlasenko et al PRD(14)-a1309,
    Cirigliano et al PLB(15)-a1406 [in hot, dense media];
    Volpe IJMPE(15)-a1506
      [in media, evolution equations based on the mean-field, extended mean-field and Boltzmann equations];
    Zhang EPJP(17)-a1803 [in curved spacetime].
  @ CPT violation:
    Barenboim et al PLB(02),
    PLB(02);
    Bahcall et al PLB(02)hp;
    news sn(10)jun [possible antineutrino-neutrino asymmetry].
  @ New physics: Hirsch et al SA(13)apr;
    Archidiacono & Hannestad JCAP(14)-a1311 [constraints on non-standard interactions].
  @ In gravitational fields: 
    Nieves & Pal MPLA(99)gq [general relativity coupling];
    Lambiase et al PRD(05)gq;
    Mukhopadhyay MPLA(05)ap [asymmetry around black holes];
    > s.a. quantum-gravity phenomenology.
  @ Related topics: Sciama ASS(01)ap/97 [decaying neutrino and ISM ionization];
    Casini et al PRD(99) [and gravity];
    Kaplan et al PRL(04) [varying masses and dark energy];
    Giunti & Studenikin PAN(09)-a0812 [electromagnetic properties];
    Goldhaber & Goldhaber PT(11)may [elusive helicity reversal];
    Fujikawa & Tureanu MPLA(15)-a1507 [neutrino-antineutrino mass splitting];
    Costantino & Fichet JHEP(20)-a2003 [neutrino Casimir force];
    > s.a. Double-Beta Decay.
"The earth is just a silly ball / To them, through which they simply pass." – John Updike.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 22 apr 2021