|  Diffusion | 
In General
  > s.a. Boltzmann Equation; history of physics;
  non-equilibrium statistical mechanics; random walk;
  Transport.
  * Idea: A process by which a quantity
    spreads from a region of higher density to one of lower density; For example, by
    particle transport.
  * Types: One can have
    (Einstein-Smoluchovski) diffusion in space, or diffusion in velocity/momentum
    space; The former is associated with Brownian motion, and is not Lorentz-invariant
    – attemps at making it compatible with special relativity lead to diffusion
    equations that have instabilities – , while the latter has a relativistic
    version which is diffusion on the mass shell, or light cone for massless particles;
    Some diffusion processes are mean-reverting, the archetypal one being the
    Ornstein-Uhlenbeck process.
  * Normal diffusion: Processes for
    which \(\langle x^2(t) \rangle\) ∝ t.
  * Anomalous diffusion: Processes in
    which the mean squared displacement is not linear in time  (non-Brownian statistics),
    for which  \(\langle x^2(t) \rangle\) ∝ t
    α, with α ≠ 1, where α
    > 1 in superdiffusion and α < 1 in subdiffusion; > s.a.
    Wikipedia page.
  @ Theoretical models: Gillespie & Seitaridou 13;
    Gidea et al a1405
      [diffusing orbits in nearly-integrable Hamiltonian systems].
  @ Diffusion processes:
    Stroock & Varadhan 79 [multidimensional, and martingale theory];
    Krylov 95,
    99;
    Dadzie & Reese a1202 [thermodynamics of volume/mass diffusion];
    Eliazar & Cohen JPA(12) [mean-reverting processes].
  @ Thermodynamics: Bertola & Cafaro PLA(10);
    Qian EPJST(15)-a1412.
  @ Discrete: Battaglia & Rasetti PLA(03) [arbitrary graphs];
    Dodin & Fisch PLA(08) [resonantly driven, diffusion paths];
    Gilbert et al JPA(11) [random walk on cubic lattices];
    Tarasenko & Jastrabik PhyA(12) [over anisotropic heterogeneous lattices];
    Becker et al PRL(13) [linear chain of cavities].
  @ Numerical:
    Ciliberti et al PRL(00) [and errors];
    Revelli et al PhyA(04) [fluctuating medium-lattice];
    Asokan & Zabaras JCP(06) [heterogeneous random media];
    Tadjeran & Meerschaert JCP(07) [2D fractional];
    Jasra & Doucet PRS(09) [sequential Monte Carlo methods];
    Nishikawa JCP(10) [first-order system approach];
    Pang AJP(14)oct [diffusion Monte Carlo].
  @ Quantum: Field JGP(03) [on manifolds];
    Pushkarov CEJP(04) [rev];
    Fortin JPA(05) [random lattice, density of states];
    Tsekov PS(11)-a1001;
    D'Errico et al NJP(13)-a1204 [with disorder, noise and interaction];
    Zakir TPAC(14) [conservative diffusion];
    Kaminaga & Mine a1603 [in the Kronig-Penney model].
  @ Inhomogeneous medium:
    Farnell & Gibson JCP(04),
    JCP(05) [Monte Carlo];
    Sattin PLA(08).
  @ Anomalous diffusion:
    Metzler & Klafter PRP(00) [and random walk];
    Abe & Thurner PhyA(05) [from Einstein's theory of Brownian motion];
    de Andrade et al PLA(05) [anistropic media];
    Klafter & Sokolov pw(05)aug;
    Turski et al mp/07 [and fractional derivatives];
    Trigger PLA(09),
    JPA(10) [in velocity space];
    Eliazar & Klafter JPA(09),
    AP(11);
    Bybiec & Gudowska-Nowak Chaos(10)-a1007;
    Pottier PhyA(11) [relaxation time distributions];
    Thiel et al PRL(13)-a1305 [disentangling sources];
    Tateishi et al FrPh(17)-a1706 [and fractional time derivatives];
    Kouri et al a1708
      [anomalous diffusion, normal diffusion and the Central Limit Theorem];
    > s.a. brownian motion; differential equations;
      Feynman-Kac Formula.
  @ Examples:
    Lemmens et al PLA(94) [fermions];
    Zandvliet et al PT(01)jul [on semiconductor surfaces];
    Bickel PhyA(07) [in confined domain];
    Knight et al Chaos(12)-a1112 [chaotic diffusion];
    Lefevere JSP(13)-a1211
      [effectively random macroscopic behavior from lattice model with Hamiltonian microscopic dynamics].
  @ Subdiffusion: Jeon & Metzler JPA(10) [statistical behaviour of short time series];
    Geraldi et al a2007 [realized by disordered quantum walks];
    > s.a. cosmic-ray propagation [in the galaxy].
  @ Related topics:
    Tsallis pw(97)jul [Lévy distributions];
    Mandelis PT(00)aug [diffusion waves];
    Garbaczewski RPMP(07)cm [indeterminacy relationships];
    Mura et al PhyA(08)-a0712 [non-Markovian];
    Helseth EJP(11) [simple experiment];
    Aghamohammadi et al PLA(13) [time variation of entropy as a measure of diffusion rate];
    Matsumoto a2011 [and renormalization group];
    > s.a. ergodic theory; Kinetic Theory;
      scattering [diffusion limit];
      types of quantum measurement [continuous].
Diffusion Equation > s.a. heat
  equation; Steady-State Equation.
  $ Def: The equation
    \(\rho\, u_{,t} = \nabla\cdot(p\nabla u) - qu + F(x,t)\).
  $ Simple case: The
    standard form is \(\partial_t u = C\, \partial_v^2 u\), with solution
    \(u = (4\pi Ct)^{-1/2} \exp\{-(v-v_0)^2/4Ct\}\).
  * Applications: It governs the
    transport of heat and charge in most materials and many other phenomena, from
    diffusion of one fluid through another to agricultural technology in Neolithic Europe.
  * Fick's law: In a steady state,
    \(J = -D\, \partial\phi/\partial x\), where \(D\) is the diffusion coefficient or constant;
    In non-steady state diffusion, \(\partial\phi/\partial t = D\, \partial^2\phi/\partial x^2\);
    Special cases are the heat and steady state equations [> see Wikipedia
    page].
  * Microscopically: One can
    express the diffusion constant in terms of the mean free path and mean
    free time as \(D = \lambda^2/\tau\).
  * Einstein relation:
    A relation connecting the diffusion constant and the mobility, valid
    in the linear response regime.
  @ Applications: SA(90)oct.
  @ Related topics: Desloge AJP(62)dec [coefficient of diffusion for a gas];
    Janavicius PLA(97) [non-linear, solution];
    Fort & Méndez PRL(99) [time-delay term];
    Islam PS(04) [Einstein-Smoluchovski equation, discussion];
    Aranovicha & Donohue PhyA(07) [improved model without mean-free-path inconsistency];
    Blickle et al PRL(07) [Einstein relation generalized to non-equilibrium];
    Ivanova & Sophocleous JPA(08) [conservation laws];
    Lefevere ARMA(15)-a1404 [Fick's law in a random lattice Lorentz gas];
    Gao et al a1511 [quantum, solution];
    Hartman et al PRL(17)-a1706 [upper bound on diffusivity].
  > Related topics:
    see brownian motion; partial differential equations;
    fokker-planck equation; Transport.
On Arbitrary Manifolds and Other Generalizations
  @ Simple manifolds:
    Franchi CMP(09) [Gödel spacetime];
    Ghosh et al a1303 [2-sphere].
  @ Arbitrary manifolds: Malliavin in(75);
    Sorkin AP(86);
    Debbasch & Moreau PhyA(04) [2D curved surface];
    Debbasch JMP(04) [curved spacetime Ornstein-Uhlenbeck process];
    De Lara JGP(06) [and geometry];
    Franchi & Le Jan CMP(11)-a1003 [covariant curvature-dependent diffusion processes];
    Smerlak NJP(12) [Fokker-Planck equation in curved spacetime];
    Wang 13.
  @ Relativistic: Dunkel et al PRD(07)cm/06 [non-Markovian proposal];
    Kazinski a0704 [from stochastic quantization];
    Haba PRE(09)-a0809,
    a0903;
    Bailleul a0810 [pathwise approach];
    Herrmann PRE(09)-a0903,
    PRD(10)-a1003;
    Haba a0903 [massless particle],
    JPA(09)-a0907 [spinning particle],
    CQG(10)-a0909 [with friction];
    Haba MPLA(10)-a1003 [energy-momentum tensor and thermodynamics];
    Haba PhyA(11)-a1010 [non-linear, particles with spin];
    Angst JMP(11)-a1106 [approach to equilibrium];
    Haba a1204;
    Debbasch et al JSP(12) [and propagation, generalization of Fick's law];
    Haba JPA(13)-a1304 [in thermal electromagnetic fields];
    Kremer PhyA(13) [in gravitational fields];
    Angst a1405 [on FLRW spacetimes];
    Haba CQG(14) [gravity of a diffusing fluid];
    > s.a. relativistic particles.
  @ Other generalizations:
    Kraenkel & Senthilvelan PS(01) [non-linear and higher-order];
    Boon & Lutsko PhyA(06);
    Yuste et al PRE(16)-a1604 [in an expanding medium].
  @ On generalized backgrounds: Comtet et al JPA(05)cm [on graphs, and localization];
    Eidelman & Kochubei JDE-m.AP/03,
    Cristadoro JPA(06) [on fractals];
    Berestycki a1301
      [in the random geometry of planar Liouville quantum gravity];
    Calcagni et al PRD(13)-a1304 [as probe of the quantum nature of spacetime];
    Arzano & Trześniewski PRD(14)-a1404 [on κ-Minkowski spacetime];
    > s.a. causal sets.
  @ Fractional: Mainardi et al FCAA(01)cm/07 [fundamental solution];
    Calvo et al PRL(07);
    Gorenflo & Mainardi a0801-conf;
    Kochubei IEOT-a1105;
    Calcagni PRD(12)-a1204 [multiscale],
    PRE(13)-a1205 [in multi-fractional spacetimes];
    Gorenflo & Mainardi a1210 [random walk models];
    Alikhanov JCP(15)-a1404 [time-fractional, new difference scheme];
    > s.a. fractals in physics.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 20 feb 2021