|  Coherent States | 
In General
  > s.a. quantum states; semiclassical
  quantum mechanics / representations of quantum mechanics [Bargmann].
  * History: 1926, Coherent states
    of the harmonic oscillator introduced by Schrödinger, in reply to a remark
    by Lorentz on the classical interpretation of the wave function; 1972, Simultaneous
    discovery by Gilmore and Perelomov that coherent states are rooted in group theory.
  * Idea:
    A "semiclassical" state for bosonic particles, peaked at a point a point
    (qi0,
    pi0)
    ∈ Γ in phase space, with minimum uncertainty.
  * Notation: Using a complex structure on
    Γ, identify (τ = mω for the harmonic oscillator)
zi = (1/2\(\hbar\))1/2 (τ1/2 qi + i τ−1/2 pi) , αi = (1/2\(\hbar\))1/2 (τ1/2 qi0 + i τ−1/2 pi0) .
$ Fock space representation: An eigenstate of the annihilation operators, defined up to normalization by
ai |α\(\rangle\) = αi |α\(\rangle\) , or
|α\(\rangle\) = exp{αi a†i − α*i ai} |0\(\rangle\) = exp{−(|α1|2 + ... + |αN|2)/2} ∑n=0∞ {αn1 (n1!)−1/2} ··· {αnN (nN!)−1/2} |n1, ..., nN\(\rangle\).
$ Configuration space representation: A Gaussian wave function ψ0 centered at a phase space point (q0, p0), of the form
ψ0(q) = N Πi=1N exp{−(qi − qi0)2 / 4σi2 + i pi0 (qi − qi0)} .
$ As group orbits: Given an initial vector |η\(\rangle\) ∈ \(\cal H\) in the Hilbert space, usually taken to satisfy \(\langle\)η| p |η\(\rangle\) = 0 and \(\langle\)η| q |η\(\rangle\) = 0 and thought of as the vacuum |0\(\rangle\), a set of coherent states is defined by the action of a unitary operator on |η\(\rangle\),
|q0, p0\(\rangle\):= U(q0, p0) |η\(\rangle\) , where U(q0, p0):= exp{−i q0 p/\(\hbar\)} exp{i p0 q/\(\hbar\)} ;
    More generally, they are labelled by |ξ, k\(\rangle\), where
    ξ belongs to a coset space and k is the label for an irreducible
    representation of G.
  * Properties: Coherent states (i) Are
    continuously parametrized by points (p, q) ∈ Γ; (ii) Form an
    (overcomplete) basis for the Bargmann representation, and define a partition of unity,
1 = ∫ (dpdq/2π\(\hbar\)) |p, q\(\rangle\langle\)p, q| ;
(iii) Among the squeezed states, for which (Δq)2 (Δp)2 = (\(\hbar\)/2)2, they are the ones with Δq = Δp = (\(\hbar\)/2)1/2.
Applications, Special Topics
  > s.a. Darboux Transformation; entangled
  states; hilbert space [triplets]; quantum states [geometry];
  uncertainty.
  * Idea: Coherent states
    allow us to "quantize'' any space X of parameters that
    has a measure; If X is a phase space, i.e., it has a symplectic
    structure and Hamiltonian, this leads to the usual quantum mechanics, but
    the procedure is much more general; It can simply be considered as a choice
    of resolution for the system, in analogy with data handling, where
    coherent states (e.g., under the form of wavelets) are very efficient.
  * And approaches to quantum theory:
    They are used as basis elements in the coherent state Bargmann, Husimi, or
    stellar representations, and in coherent-state phase space path integrals,
    \(\langle\)p'', q''| exp{−iHt/\(\hbar\)}
    |p', q'\(\rangle\).
  @ General references: Isidro PLA(02)qp [and complex structures on phase space, and duality];
    Campoamor-Stursberg et al PLA(12) [from classical action-angle variables];
    Gouba a1909,
    a1912-ln [generalized coherent-state quantization].
  @ Coherent-state path integrals: Marchioro JMP(90) [as sums over classical paths];
    Klauder qp/98-proc,
    FP(01)qp/00;
    Shibata & Niizeki JMP(01) [periodic potential];
    Torre PRD(05)qp [linear systems];
    dos Santos & de Aguiar JPA(06)qp [in the Weyl representation];
    Gazeau et al JPA(07)qp/06 [and fuzzy sphere];
    Yamashita IJTP(10) [stochastic approach];
    Wilson & Galitski PRL(11)-a1012 [breakdown of method];
    Rivas PRA(13)-a1207 [semiclassical approximation];
    Yanay & Mueller EPJst(15)-a1212;
    Kordas et al PRA(14)-a1408 [with a continuum time];
    Bruckmann & Urbina a1807 [rigorous construction using dual representation];
    Rançon a1906 [and stochastic calculus];
    Berra-Montiel a2007 [star product representation].
  @ And decoherence, classical limit:
    Zurek et al PRL(93);
    Meinrenken JPA(94);
    > s.a. decoherence.
  @ And geometric phases: Nesterov & Sabinin IJTP(97)ht/00 [loops and geometric phases];
    Field & Anandan JGP(04).
  @ Semiclassical evolution: Hagedorn CMP(80);
    Stone IJMPB(01)qp/00,
    et al JMP(00)qp [spin];
    Novaes JMP(05),
    Ribeiro & de Aguiar AP(08)-a0704 [propagator];
    Novaes & de Aguiar PRA(05)qp;
    Mar-Sarao & Moya-Cessa a0806 [non-Markovian dissipation];
    Viscondi & de Aguiar JMP(11)-a1103 [propagator SU(n) coherent states];
    Hertz et al Symm(16)-a1606 [generalized coherent states, non-classical behavior];
    > s.a. types of coherent states [spin].
  @ Evolution, other: Dias et al JMP(06)ht/05 [anharmonic oscillator];
    Zipfel & Thiemann PRD(16)-a1506 [stable coherent states];
    > s.a. types of coherent states.
  @ Entangled coherent states:
    Fan & Chen PLA(02);
    Sanders JPA(12)-a1112 [rev];
    Zhong et al OL(19)-a1905 [non-locality];
    > s.a. types of coherent states [entangled spins].
  @ And information theory:
    Fujii qp/01-talk,
    qp/02-talk;
    Kim et al PhyA(12)-a1104 [information geometry and entangled Gaussian states].
  @ Coherent state superpositions:
    Glancy & Vasconcelos JOSAB(08)-a0705 [optical cat states, production];
    Lee & Jeong PRA(09) [effects of squeezing];
    Messina & Draganescu a1306 [unitary representations].
  @ Experiments: Marquardt et al PRA(07) [macroscopic quantum coherence];
    > s.a. experiments in quantum mechanics.
  @ Other topics: Klauder LNP(87) [approximation of solutions of wave equation];
    Dass & Ganesh qp/01-wd [cloning];
    Bashkirov & Sukhanov qp/01-conf [thermodynamics and entropy];
    Penson & Solomon qp/01-conf [from combinatorial sequences];
    Das IJTP(02) [interacting Fock space];
    Ali et al JPA(04) [and change of basis];
    Andersen et al PRA(05)qp [purification];
    Wolf et al PRL(06)qp/05 [extremality];
    Ashhab PRA(07)-a0706 [and entanglement detection];
    Chakraborty et al a0805 [and quantizable observables];
    Schliemann PRA(15)-a1503 [properties of fluctuations, and examples].
  > Related topics: see first-class
    constrained systems and dirac quantization;
    non-commutative geometry [spectral distance];
    pilot-wave theory [trajectories].
References
  > s.a. geometric quantization; modified coherent
  states and specific systems; fock space.
  @ General: Rohrlich in(70);
    Klauder & Skagerstam 85;
    Zhang et al RMP(90);
    Klauder IJTP(94);
    Ali et al RVMP(95) [rev];
    in Hannabuss 97;
    Klauder qp/01 [rev];
    Isidro ht/02 [conditions for existence];
    Panigrahi et al qp/03 [general procedure];
    Johansen PLA(04) [non-classical properties];
    Nemoto & Braunstain PLA(04) [significance];
    Milonni & Nieto in(09)-a0903 [rev];
    Klauder O&S(11)-a1008-proc [and quantum foundations];
    issue JPA(12)#24;
    Rosas-Ortiz a1812-in [intro];
    Martin-Dussaud a2003
      [from Schrödinger to quantum optics and quantum gravity];
    Bagchi et al IJMPA-a2004 [pedestrian introduction].
  @ Measurement: Diósi qp/96;
    Das & Arvind JPA(17)-a1601 [based on weak measurements].
  @ Geometry of coherent-state space:
    Field & Hughston JMP(99);
    Brody & Graefe JPA(10)-a1001;
    Martinetti & Tomassini CMP(13)-a1110 [spectral distance].
  @ Related topics: Ali et al JPA(08) [and incorporated statistical distributions];
    Bannai & Tagami JPA(11) [anticoherent states];
    Chen & Lin JMP(13) [categorification];
    Bojowald & Tsobanjan CQG(14)-a1401 [group coherent states and effective Casimir conditions];
    > Segal-Bargmann Transform.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 11 jul 2020