|  Types of Spacetimes | 
General Types
  > s.a. causality conditions; causality violations;
  Geodesically Complete; lorentzian geometry.
  * Generic: Every
    timelike or null geodesic contains at least one point with
    non-zero Ka
    Kb
    K[c
    Rd]ab[e
    Kf ] (effective curvature).
  * Strongly asymptotically
    predictable: Essentially, a spacetime with no naked singularities, except
    white holes; An asymptotically flat spacetime (M, g), with
    compactification (M′, g′), such that in M
    there is a sufficiently large open region V (i.e., which contains the
    past of \(\cal I\)+, the closure
    of M′ ∩ J
    −(\(\cal I\)+)
    is in V), which makes (V′, g′) globally hyperbolic.
  * Totally vicious:
    A spacetime (M, g) such that for all p in M,
    I −(p) ∩
    I +(p) = M,
    i.e., the Lorentzian distance function d(p, q)
    = ∞; Examples are a 2-torus with the usual metric, the Gödel
    spacetime, the Kerr-Newman solution with a2
    + e2 > m2.
  @ General references: Manchak PhSc(11) [what is a physically reasonable spacetime?].
  @ Conformally flat spacetimes:
    Pina & Tenenblat JGP(07);
    de Siqueira a1212-conf [?].
  @ Totally vicious: Ikawa & Nakagawa JoG(88);
    Matori JMP(88);
    Kim & Kim JMP(93).
  @ Topologically non-trivial:
    Lobo a1604-MG14 [multiply-connected spacetimes, rev];
    > s.a. geons; wormholes.
  @ Related topics:
    Markowitz GRG(82) [conformally hyperbolic];
    Beem & Harris GRG(93) [generic];
    Hall CQG(96) [decompositions into constant-type regions];
    Ramos et al JMP(03) [double warped, invariant characterization];
    Aké et al a1808
      [globally hyperbolic, with timelike boundaries].
  > In terms of curvature:
    see petrov types; riemann
    tensor [constant invariants]; Silent Universe;
    solutions; weyl tensor [purely magnetic].
  > In terms of physical interpretation:
    see asymptotic flatness; black holes;
    cosmological models; Non-Imprisonment.
Cylindrically Symmetric
  > s.a. axisymmetry [including higher dimensions]; models
  in canonical general relativity; [cosmic strings].
  * Idea: Axisymmetry with an additional z-invariance.
  @ Levi-Civita: Rao JPA(71) [radiating];
    Delice APPB(06)gq/04 [vacuum, non-static],
    gq/05-wd [radiating].
  @ Other general relativity: Buchdahl PR(59) [massless scalar field, Buchdahl solution];
    Carot et al CQG(99)gq [def];
    Arazi & Simeone GRG(00)gq;
    Barnes CQG(00)gq = gq/00-proc;
    Senovilla & Vera CQG(00)gq [dust cosmology];
    Klepac  & Horsky CQG(00)gq [Einstein-Maxwell + fluid];
    Qadir et al CQG(00)gq/07 [homotheties];
    Fjällborg CQG(07) [static, Einstein-Vlasov];
    Žofka & Bičák CQG(08)-a0712 [static, with cosmological constant];
    Trendafilova & Fulling EJP(11)-a1101 [vacuum, static];
    Giardino JModP(14)-a1403 [vacuum];
    Bronnikov et al CQG(20)-a1901 [rev].
  @ With massless scalar and cosmological constant:
    Momeni & Miraghaei IJMPA(09);
    Rezazadeh IJTP(11);
    Erices & Martínez PRD(15)-a1504 [stationary].
  @ In other theories of gravity: Arazi & Simeone EPJP(11)-a1102 [Brans-Dicke theory];
    Shamir & Raza ASS(15)-a1506 [f(R,T) gravity].
Einstein Manifold / Metric / Space / Static Universe
  > s.a. embeddings; de sitter space.
  $ Def: A manifold with
    Lorentzian metric such that Rab
    = c gab, with c a constant.
  * Brinkman's theorem:
    Two Einstein spaces can be conformally mapped to each other only if both are
    Ricci-flat pp-waves, or both are conformally flat [@ Daftardar-Gejji
    GRG(98), with matter].
  @ General references: Petrov 69;
    Besse 87;
    Gao JDG(90);
    Dancer & Strachan CQG(02)m.DG [on TSn+1];
    Gibbons et al CQG(04)ht
      [5D, on S3-bundle over S2];
    Böhm JDG(04) [and simplicial complexes];
    Boyer et al AM(05) [on spheres];
    Mitra a0806/PRD;
    Kiosak & Matveev CRM(09)-a0905 [no conformal rescalings in complete case];
    Sung JGP(11) [non-existence of Einstein metrics on some classes of 4-manifolds];
    Deshmukh JGP(11) [characterization];
    Andersson & Moncrief JDG(11) [as attractors for the Einstein flow].
  @ Stability: 
    Barrow et al CQG(03) [with pfluid];
    Carneiro & Tavakol PRD(09)-a0907 [in the presence of vacuum energy];
    Grøn GRG(10);
    Barrow & Yamamoto PRD(12)-a1108 [as a non-LRS Bianchi type IX solution];
    Kröncke AGAG(15)-a1311.
  @ In other gravity theories, stability: Seahra & Böhmer PRD(09)-a0901 [instability in \(f(R)\) theories];
    Böhmer & Lobo PRD(09) [in modified Gauss-Bonnet gravity];
    Miritzis PRD(09) [in fourth-order gravity];
    Goheer et al CQG(09);
    Böhmer et al MG12(12)-a1001;
    Canonico & Parisi PRD(10)-a1005 [in semiclassical lqc and Hořava-Lifshitz];
    Atazadeh et al PLB(14) [in braneworld scenario];
    > s.a. higher-order theories [hybrid theories];
  hořava gravity.
  @ Conformally Einstein: Gover m.DG/04-proc [almost];
    Gover & Nurowski JGP(06)m.DG/04 [obstructions, n-dimensional].
  @ Other generalizations: Ge et al a1508 [discrete];
    Klemm & Ravera PRD(20)-a1811 [with torsion and non-metricity].
Stationary and Related Spacetimes
  > s.a. general relativity solutions with symmetries and
  with matter; Papapetrou Theorem.
  * Ehlers group: A symmetry
    group of the vacuum Einstein equation for strictly stationary spacetimes.
  * Stationary spacetime: One
    with a timelike Killing vector field, or with a one-parameter isometry group
    such that its orbits are everywhere timelike curves.
  * Static spacetime: A stationary
    spacetime in which the timelike Killing vector field is hypersurface-orthogonal.
  * Pseudostationary spacetime: A
    spacetime with a Killing vector field which is timelike at sufficiently large
    asymptotic distances.
  @ Static: Bartnik & Tod CQG(06)gq/05 [and spatial 3-metrics];
    Sánchez & Senovilla CQG(07) [global orthogonal decomposition];
    Lafontaine JGP(09);
    Cederbaum a1210-proc [geometry, geometrostatics];
    Ferrando & Sáez CQG(13)-a1302 [3-metrics that are spatial metrics of static vacuum solutions];
    Figueiredo & Natário a2004 [duality with Riemannian manifolds];
    > s.a. anti-de sitter spacetime; Ultrastatic Spacetimes.
  @ Stationary: Tod CQG(17)-a1702 [characterizing initial data].
  @ Related topics: Mars CQG(01)gq [Ehlers group];
    > s.a. conformal transformations [extensions]; killing
      vector fields; spin coefficients.
Other Symmetries > s.a. general relativity solutions
  with symmetries; killing fields; lorentzian
  geometry; Maximally Symmetric Geometry.
  @ Flat: Barbot JGP(04)m.GT [globally hyperbolic];
    Guediri DG&A(04) [compact];
    Adler & Overduin GRG(05) [approximately flat];
    Bonsante JDG(05) [with compact hyperbolic Cauchy surfaces];
    > s.a. conservation laws; minkowski space.
  @ 3D: Bona & Coll JMP(94) [with isometries];
    Charette et al JGP(03) [with closed timelike curves].
  @ Plane symmetric: Feroze et al JMP(01) [classification];
    Shabbir & Ramzan a1512 [non-static, proper curvature collineations].
  @ Homogeneous:
    Bueken & Vanhecke CQG(97) [curvature homogenous];
    Valiente CQG(98)gq,
    CQG(99)gq/98,
    CQG(00) [polyhomogeneous];
    Meessen LMP(06) [with canonically homogeneous null geodesics];
    > s.a. bianchi models and FLRW models.
  @ Other spatial symmetries: Llosa & Carot CQG(10)-a0907 [two Killing vector fields, flat deformations];
    > s.a. Self-Similarity; spherical
      symmetry [including Painlevé-Gullstrand form].
Other Types
  > s.a. coordinates [forms of line element];
    examples of lie groups [spacetime groups].
  * Generalized Lewis-Papapetrou:
    A metric of the form ds2
    = −f (dt + ωi
    dxi)2
    + f −1 gij
    dxi dx j ;
    > s.a. teleparallel gravity.
  @ References:
    Clarke & Joshi CQG(88) [reflecting].
  > Specific forms of the metric:
    see Gordon Ansatz; Kerr-Schild Metric;
    Misner Metric; Misner Space;
    Newman-Tamburino Metrics; W-Universe.
  > Generalized geometries:
    see types of metrics [singular, distributional]; types
    of lorentzian geometries [including low-regularity]; types of singularities.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 17 may 2020