|  Types of Spacetime Singularities | 
In General
  * Criteria: The divergence of a curvature scalar
    can be used to find some singularities, but some are not curvature singularities; A more general
    criterion is the existence of incomplete geodesics (usually timelike or null) in the spacetime.
  * Types: Isolated objects (black holes, white holes,
    naked singularities), cosmological singularities (can be spatially homogeneous, velocity-dominated
    or mixmaster-like).
  * Tools: Global techniques in Lorentzian geometry,
    using properties of congruences of geodesics and assumptions on the curvature (usually the weak
    or strong energy conditions); Bundle of linear frames over spacetime [@ Hawking & Ellis
    73, §8.3]; Cauchy-Kowalewska method, to produce
    spacetimes with Cauchy horizons, then Geroch transfomations to singular ones.
  * Results: Indications that either the Cauchy horizon
    has closed generators and a Killing vector field, or, if compact, it has 2 commuting Killing vector
    fields (& Isenberg & Marsden).
Naked Singularities
  > s.a. censorship; gravitational
  collapse; scalar-tensor theories.
  @ Spherical: Weitkamp JGP(05) [existence];
    Giambò JMP(06)gq [visibility];
    > s.a. spherical solutions.
  @ Other types:
    Newman & Joshi AP(88) [close to spherical];
    Virbhadra gq/96 [exact directional asymptotically flat solution];
    Maeda et al PRL(98) [string-inspired theory].
  @ And collapse:
    Shapiro & Teukolsky PRL(91);
    Joshi & Dwivedi CMP(92),
    LMP(93);
    Jhingan gq/97-MG8;
    Kudoh et al PRD(00) [HIN spacetime];
    Joshi et al PRD(02)gq/01,
    PRD(04) [shearing effects];
    Giambò & Magli DG&A(03)mp/02 [dust],
    et al CQG(03)gq/02,
    CQG(03) [conditions];
    Dafermos ATMP(05)gq/04 [spherical, scalar];
    Harada Pra(04)gq-in;
    Mitsuda et al PRD(05)gq [electromagnetic radiation];
    Ziaie et al GRG(11)-a1106 [in f(R) gravity];
    Ortiz AIP(12)-a1204 [spherically symmetric  dust collapse].
  @ Lower-dimensional: Oliveira-Neto IJMPD(03)gq/02 [2+1];
    García-Islas a1511 [2D model].
  @ Higher-dimensional: Debnath et al GRG(04)gq/03,
    Debnath & Chakraborty JCAP(04)mp/03,
    GRG(05)gq/03 [Szekeres spacetime, dust];
    Langfelder & Mann CQG(05)gq/04 [spherical, any D];
    An & Zhang AHP(18)-a1509.
  
  @ Negative mass: Gibbons et al PTP(05)ht/04 [Schwarzschild, stability];
    Cardoso & Cavaglià PRD(06)gq [4D Schwarzschild, -dS/-AdS, instability].
  @ Vs black holes: Joshi et al CQG(13)-a1304 [accretion disk properties];
    Ortiz et al CQG(15)-a1401;
    > s.a. black-hole mimickers; lensing.
  @ Appearance, phenomenology: Schiffer GRG(93);
    Dwivedi PRD(98);
    Joshi PRD(07);
    Deshingkar IJMPD(09)-a0710;
    Deshingkar a1012 [unobservability of null naked singularities];
    Sahu et al PRD(12)-a1206 [and strong gravitational lensing];
    Maluf GRG(14)-a1401 [repulsive force];
    Boshkayev et al PRD(16)-a1509 [test particles];
    Dey et al IJMPD(19)-a2101 [at the galactic center, test];
    > s.a. sources of gravitational radiation.
  @ Behavior of null geodesics: Nakao et al PRD(03)gq/02;
    Dadhich & Zaslavskii IJMPD(09)-a0811.
  @ Behavior of quantum fields: Iguchi & Harada CQG(01)gq;
    Batic et al EPJC(11)-a1005 [Dirac equation, repulsive nature of singularity].
  @ Related topics: Vaz & Witten PLB(98) [radiation spectrum];
    Brax & Davis PLB(01) [branes];
    Miyamoto et al PTP(05)gq/04 [quantum effects];
    Dotti et al PLB(07)gq/06 [instability];
    Joshi Pra(07)gq-in,
    Joshi & Malafarina GRG(13)-a1105 [genericity];
    Sadhu & Suneeta IJMPD(13)-a1208 [stability under scalar field perturbations];
    Stuchlík et al EPJC(15)-a1412 [perfect fluid tori orbiting Kehagias-Sfetsos naked singularities];
    Manko & Ruiz PLB(19)-a1803 [black hole and naked singularity dualism];
    Rodnianski & Shlapentokh-Rothman a1912 [exterior region];
    Hernandez-Lorenzo & Steinwachs a2003
      [in quadratic f(R) gravity];
    > s.a. Antigravity; types of geodesics.
Specific Types of Spacetimes > s.a. black holes and information [endpoint of
  evaporation]; cosmological singularities; Levi-Civita Spacetime.
  @ Spherical symmetry: Guven & O'Murchadha PRD(97)gq;
    Silaev & Turyshev GRG(97) [axial stability];
    Deshingkar et al PRD(99) [collapse];
    Nolan PRD(99)gq [strength];
    Singh CQG(99) [collapse, shell-focusing];
    Barve et al CQG(99),
    Nolan & Mena CQG(02)gq [dust];
    Krasiński & Bolejko PRD(06) [charged dust, singularity avoidance];
    Fayos & Torres CQG(11)-a1204,
    CQG(12)-a1204 [invariant causal characterization];
    > s.a. schwarzschild solution.
  @ Inside black holes: Ori PRL(92),
    PRL(99) [oscillatory];
    Burko PRD(99)gq;
    Gorbonos & Wolansky JMP(07)gq/06 [mathematical model];
    Stoica AHEP(14)-a1401 [geometry];
    Chakraborty et al PRD(17)-a1605 [Kerr spacetimes];
    > s.a. particles in kerr spacetimes [overspinning].
  @ Critical collapse: Burko PRL(03)gq/02;
    Frolov & Pen PRD(03)gq.
Other Kinds of Singularities
  > s.a. 3D quantum gravity; numerical relativity
  models; singularities [other theories]; wave phenomena.
  * Conformal singularities: They are
    transformed into a regular spacelike hypersurface by a conformal transformation.
  * Quasiregular: The mildest true
    classical type of singularity; They can include disclinations and dislocations.
  * Generalized hyperbolicity: Analogous
    to global hyperbolicity, but based on behavior of test fields.
  * Quantum mechanically singular: One
    in which the spatial derivative operator for a field equation is not essentially
    self-adjoint.
  @ Velocity-dominated: Eardley et al JMP(72);
    Demaret et al PLB(85);
    Choquet-Bruhat & Isenberg JGP(06)gq/05 [half-polarized].
  @ Quasiregular: Ellis & Schmidt GRG(77);
    Konkowski et al PRD(85),
    Konkowski & Helliwell PRD(85) [in cosmology];
    Puntigam & Soleng CQG(97) [dislocations];
    Helliwell et al GRG(03) [quantum field theories as probes];
    > s.a. cosmological models.
  @ C0:
    Nolan gq/99;
    Ori gq/99,
    PRD(00).
  @ Strong: Rudnicki & Zieba PLA(00),
    Rudnicki et al MPLA(02) [and censorship].
  @ Conical: Tod CQG(94);
    Oliveira-Neto JMP(96);
    Maluf & Kneip JMP(97)gq/95 [energy];
    Wilson CQG(00)gq  [hyperbolicity];
    Kenmoku et al IJMPD(03) [3D, ADM formalism];
    Hörmann a1501 [and global hyperbolicity];
    > s.a. gravitational energy; topological defects;
      holonomy; scattering;
      types of lorentzian geometries.
  @ Spacelike: Sandin & Uggla CQG(10)-a0908 [and perfect fluid properties];
    Uggla GRG(13).
  @ Other types: Newman PRS(93),
    PRS(93) [conformal];
    Rendall CQG(95)gq/94 [crushing];
    Ori & Flanagan PRD(96)gq/95 [null];
    Clarke CQG(98)gq/97 [generalized hyperbolicity];
    Bray & Jáuregui AJM-a0909 [zero-area singularities];
    Konkowski & Helliwell a1006-MG12;
    Lukash & Strokov IJMPA(13)-a1301 [integrable singularity];
    Luk JAMS(18)-a1311 [weak null singularities];
    > s.a. gravitational-wave solutions [impulsive];
      metric types [degenerate]; spacetime boundaries.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 17 jan 2021