|  Solutions of Einstein's Equation with Symmetries | 
In General
  > s.a. einstein equation; generating methods;
  killing fields; lorentzian geometry;
  Maximally Symmetric Geometry; types
  of spacetimes.
  * Result: Any 2D Lie transformation
    group which contains a 1D subgroup whose orbits are circles must be Abelian, and any
    3D such group containing a subgroup with closed orbits must have associated Lie algebra
    of Bianchi type I (Abelian), II, III, VII0, VIII or IX
    [@ Barnes CQG(00)gq].
  * Symmetry reduction and integrability:
    The integrability of some symmetry-reduced vacuum and electrovacuum Einstein equations
    has given rise to the construction of powerful solution generating methods, including
    the inverse-scattering approach, soliton-generating techniques, Bäcklund and
    symmetry transformations.
  @ References: Beig & Chruściel CQG(97)gq/96 [asymptotically flat, Killing data],
    CMP(97)gq/96 [asymptotically flat and empty, symmetry groups];
    Antoci & Liebscher a1007 [interpreting solutions with Killing symmetries];
    Alekseev a1011-MG12
      [integrable symmetry reductions].
Static Solutions
  > s.a. black-hole solutions; spherically-symmetric
  solutions; schwarzschild spacetime; types
  of spacetimes [cylindrical].
  $ Def: Solutions of the Einstein
    equation with a hypersurface-orthogonal timelike Killing vector field; The
    line element can be written in the form
ds2 = −V 2(x) dt2 + hij(x) dxi dxj .
  * Properties: They always have
    Γttt
    = Γtij
    = Γitj
    = 0, for all i, j, and
    R ttij
    = 0.
  * Static axisymmetric: They
    can be parametrized as Weyl solutions by the line element
ds2 = −e2Uc2dt2 + e−2U [e2γ(dz2 + dr2) + r2 dφ2] ,
    where U and γ are functions of r and z;
    The vacuum field equations are U,rr
    + U,r
    r−2
    + U,zz
    = 0 (the Laplace equation ∇2U(r, z)
    = 0), and dγ = r (U,r2
    − U,z2) dr
    + 2r U,r U,z
    dz.
  * Other special cases:
    Ultrastatic; In the electrovac case, Papapetrou-Majumdar.
  @ Weyl spacetimes:
    in Vieira & Letelier PRL(96);
    Emparan & Reall PRD(02) [D ≥ 4];
    Bini et al JPA(05)-a1408 [spinning test particles].
  @ Other vacuum:
    Beig CQG(91) [conformal properties];
    Chruściel CQG(99)gq/98 [classification];
    Dadhich & Date gq/00 [axisymmetric];
    Gutsunaev et al G&C(02) [rev];
    Chruściel APPB(05)gq/04 [analyticity at horizons];
    Anderson & Khuri a1103-wd [with prescribed geometric or Bartnik boundary data];
    Qing & Yuan JGP(13).
  @ Electrovac: Chruściel CQG(99)gq/98 [re classification];
    > s.a. solutions with matter.
  @ Einstein-Yang-Mills: Kleihaus & Kunz PRD(98)gq/97 [+ dilaton, axisymmetric];
    Radu PRD(02)gq/01 [Λ < 0].
  @ With cosmological constant: Chruściel & Simon JMP(01)gq/00 [Λ < 0 generalized Kottler];
    Anderson et al gq/04-proc.
  @ Other matter and / or properties: Beig & Simon CMP(92) [pfluid, uniqueness];
    Allison & Ünal JGP(03) [geodesics];
    Gaudin et al IJMPD(06)gq/05 [massless scalar];
    Fjällborg CQG(07)gq/06 [Einstein-Vlasov cylinders].
Stationary Solutions > s.a. axisymmetry [including
  Ernst equation]; black-hole solutions; types
  of spacetimes [pseudostationary, cylindrical].
  * Idea: Solutions of Einstein's
    equation with a timelike Killing vector field; Important examples are the axisymmetric
    kerr and  kerr-newman
    black-hole solutions.
  * Result: The only geodesically complete
    stationary vacuum solution of the Einstein equation is Minkowski, or a quotient of it.
  * Result: A stationary, analytic
    black-hole spacetime satisfying Einstein's equation must be axisymmetric.
  * Vacuum: The most general
    stationary, axisymmetric, sourcefree see involves two arbitrary functions (mass
    and angular momentum distribution on the axis); The only non-singular one is
    Minkowski/discrete G [@ Anderson AHP(00)gq].
  * Electrovac case: The solutions
    depend on two complex Ernst potentials, \(\cal E\) and ψ.
  @ General references: Anderson AHP(00)gq [uniqueness];
    Beig  & Schmidt LNP(00)gq [review];
    Clément a1109-ln.
  @ Initial data: Dain CQG(01)gq [asymptotically flat];
    Pfeiffer et al PRD(05)gq/04 [+ gravitational waves];
    Dain PRL(04) [departure from stationarity measure].
  @ With fluid: Mars & Senovilla CQG(96)gq/02 [axisymmetric, 1 conformal Killing vector field];
    Rácz & Zsigrai CQG(96),
    CQG(97).
  @ Related topics: Clément PLB(99)gq/98 [singular rings];
    Beig et al CQG(09)-a0907 [with reflection symmetry, non-existence results];
    Beig CM-a1005-conf [stationary n-body problem];
    Bičák et al CQG(10)-a1008 [time-periodic implies stationary];
    > s.a. Inverse Scattering; numerical models.
Solutions with Spacelike Symmetries
  > s.a. axisymmetry [including cylindrical symmetry];
  gowdy spacetime; spherical symmetry.
  * Spatially homogeneous: Bianchi models (Kasner,
    Friedmann solutions); + isotropic solutions (FLRW models, de Sitter and anti-de Sitter).
  * Flat: Minkowski space and all the ones
    obtained by identifications in it [@ Fried JDG(87)].
  @ Spatially homogeneous:
    Christodoulakis et al JPA(04) [4+1];
    Apostolopoulos CQG(05)gq [expansion-normalized variables];
    > s.a. bianchi models for 3+1.
Other Special Solutions > s.a. horizons [apparent];
  einstein equation; radiating solutions;
  solutions with matter; types
  of metrics  [degenerate].
  * "Integrable" types: Self-dual,
    stationary axisymmetric vacuum and electrovac equations have transitive symmetry groups.
  @ One Killing vector field:
    Moncrief AP(86) [U(1)];
    McIntosh & Arianrhod GRG(90),
    Rácz JMP(97)gq/93 [non-null];
    Isenberg & Moncrief CQG(92).
  @ Two Killing vector fields:
    Chruściel AP(90) [U(1) × U(1)];
    Husain LMP(96) [commuting];
    Mars & Wolf CQG(97)gq/02 [with conformal Killing vector field];
    Zagermann CQG(98)gq/97 [metric vs connection reduction];
    Alekseev & Griffiths PRL(00)gq [spacelike];
    Sparano et al PLB(01)gq [non-abelian],
    DG&A(02)gq/03,
    DG&A(02)gq/03;
    Isenberg  & Weaver CQG(03)gq [T2 vacuum, global existence];
    Szereszewski & Tafel CQG(04)gq/03  [pfluid];
    Alekseev TMP(05)gq [spaces of local solutions of integrable reductions];
    Marvan & Stolin AIP(08)-a0709 [orthogonally transitive, commuting].
  @ Plane symmetry: Pradhan et al IJTP(07)gq/06 [pfluid];
    Sharif & Aziz CQG(07)gq/06 [pfluid];
    Jones et al AJP(08)jan-a0708 [infinite-plane-like].
  @ Other symmetries: Taub AM(51) [3 commuting Killing vector fields];
    Misner AP(63) [time-symmetric];
    Zafiris JMP(97)gq  [general];
    Senovilla & Vera CQG(99)gq [classification];
    Fayos & Sopuerta gq/00-conf,
    gq/00-MG9,
    CQG(01)gq/00 [integrability];
    Avakyan et al gq/01
      ["homogeneous gravitational field"].
  @ Features of special solutions: Dietz FP(88);
    Hoenselaers & Dietz PLA(88);
    Hoenselaers & Skea GRG(89) [Petrov II electromagnetic null field];
    Araujo et al GRG(92);
    Zalaletdinov in(00)gq/99 [approximate symmetries].
  > Other solutions:
    see c-metric; gödel solution;
    Lewis-Papapetrou; Melvin;
    Oppenheimer-Snyder; Self-Similarity;
    Taub-NUT Solution; Tolman Solutions.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 26 mar 2016