|  Types of Lorentzian Geometries | 
In General > s.a. 2D,
  3D and 4D geometries; types
  of metrics [including Zollfrei] and spacetimes [including conformally flat].
  * Approach: Use a frame in
    which gμνs are
    constant, and use the Riemann tensor and its derivatives to classify.
  * Equivalence problem: Solved
    by E Cartan, in general requires comparison of up to 10th derivatives of
    Rabcds;
    However, depending on the Petrov type of the metrics, one may
    need a smaller number q of derivatives (& Karlhede);
    For types I, II and III, q ≤ 5;
    For general type D, q ≤ 6;
    For vacuum type D, q ≤ 3;
    For general types N and O, q ≤ 7;
    For vacuum type N, q ≤ 6.
  * Time orientability: If a
    Lorentzian manifold is not time-orientable, it admits a 2-fold time-orientable
    covering [@ Markus AM(55)]; The necessary and
    sufficient condition for the existence of a time-orientable metric on M is
    χ(M) = 0 (as for existence of a Lorentzian structure).
  @ General references: Karlhede GRG(80),
    GRG(80);
    Karlhede & Lindström GRG(83);
    Kreinovich IJTP(91) [NP-hard];
    Koutras CQG(92) [q = 4 example];
    Siklos CQG(96) [parameters];
    Skea CQG(00) [q = 5];
    Schmidt gq/01-GR14 [indistinguishable metrics];
    Karlhede GRG(06);
    McNutt et al JMP(17)-a1704 [classification in 5D];
    Mergulão & Batista RBEF(20)-a2007 [Cartan-Karlhede algorithm, pedagogical].
  @ Comparing metrics: Aguirregabiria et al GRG(01)gq;
    Llosa & Soler CQG(05)gq/04 [as deformations of constant curvature];
    Hall & Lonie JGP(11) [projectively related 4D Lorentzian manifolds and holonomy];
    > s.a. riemann tensor [classification].
  @ And scalar curvature invariants: Coley et al CQG(04)gq [vanishing invariants];
    Hervik & Coley CQG(10)-a1002 [geometries characterised by scalar polynomial curvature invariants];
    Coley et al CQG(10)-a1003;
    Hervik CQG(11)-a1109
      [a spacetime not characterised by its invariants is of aligned type II];
    Hervik et al JGP(15)-a1410
      [metrics with identical polynomial curvature invariants];
    > s.a. riemann tensor.
  @ Special types of metrics:
    Haddow & Carot CQG(96) [warped products];
    Milson & Pelavas CQG(08)-a0710 [type N];
    Sousa et al CQG(08) [3D, solution of equivalence problem];
    Coley et al CQG(09)-a0901 [4D, determined by curvature scalars];
    Hall & Lonie Sigma(09)-a0906 [projectively equivalent manifolds];
    Choi AJM-a1204
      [3D, complete, flat, with free fundamental group];
    Papadopoulos a1405
      [geometries which can not be locally described using curvature scalars solely];
    Lake a1912 [with a vanishing second Ricci invariant];
    Nozawa & Tomoda CQG-a1910 [3D with 3 Kvfs];
    > s.a. petrov types.
  @ Geometries of bounded curvature:
    Klainerman & Rodnianski IM(05)m.AP/03 [vacuum];
    Anderson JMP(03) [n+1 dimensions];
    de Araujo Costa JGP(04)
      [bounded sectional curvature Einstein metrics];
    Chen & LeFloch CMP(08)m.AP/06 [injectivity radius];
    in Punzi et al AP(07)gq/06;
    Alexander & Bishop CAG-a0804 [Alexandrov curvature bounds];
    LeFloch a0812 [injectivity radius];
    > s.a. solutions of general relativity.
  > Other types:
    see black-hole phenomenology [effective metric]; light;
    solutions of general relativity; types of spacetimes.
  > Classification:
    see metrics [characterization]; riemannian geometry [invariants];
    James Vickers' page.
  > Emergence: see
    emergent gravity [including analogs of
    spacetime metrics]; lorentzian geometry.
Homogeneous and Other Symmetric Geometries
  > s.a. bianchi models;
  solutions of einstein's equation with symmetries.
  * Symmetric spacetimes:
    Locally symmetric spacetimes are those with vanishing covariant derivatives
    of the Riemann tensor, Rabcd;m
    = 0; Second-order symmetric ones have vanishing second covariant derivatives
    of the Riemann tensor, Rabcd;mn = 0;
    Contrary to the Riemannian geometry case, there exists proper second-order
    symmetric Lorentzian spacetimes which are not locally symmetric.
  * Semi-symmetric spaces:
    Conformally semi-symmetric, ∇[m
    ∇n]
    Cabcd
    = 0; Ricci semi-symmetric, ∇[m
    ∇n]
    Rab = 0.
  @ Homogeneous, constant curvature:
    Mess pr(90)-a0706 [constant curvature];
    Coley et al CQG(06)gq/05;
    Gilkey 07;
    Milson & Pelavas IJGMP(09)gq/07 [4D, curvature homogeneous];
    Coley et al CQG(09)-a0904 [4D, constant curvature invariants];
    Brozos-Vázquez et al DG&A(09) [as realizations of curvature models];
    Bowers a1203 [3D, and the Petrov classification];
    > s.a. 3D geometries.
  @ Symmetric spacetimes: Senovilla CQG(08),
    Blanco et al JPCS(10)-a1001,
    JEMS-a1101 [second-order];
    Åman JPCS(11)-a1006 [semi-symmetric spaces].
Generalized Lorentzian Geometries
  > s.a. discrete spacetime;
  spacetime singularities; types of metrics [degenerate].
  @ General references: Mayerhofer PRSE(08)mp/06 [Colombeau, Lorentzian];
    Hohmann PRD(13)-a1304 [Cartan geometry on observer space and Finsler spacetimes];
    Alexander et al a1909 [Lorentzian length spaces].
  @ Continuous, low-regularity metrics:
    Sorkin & Woolgar CQG(96)gq/95 [causal order];
    Kunzinger et al GRG(14)-a1310 [C1,1 metrics, causality];
    Steinbauer CQG(14) [Lipschitz metrics have C1 geodesics];
    > s.a. causal structures.
  @ Disclinations: Holz CQG(88) [2+1 dimensions];
    Larsen JGP(92);
    Li CQG(01);
    > s.a. defects.
  @ Conical singularities: Clarke et al CQG(96)gq [cosmic strings];
    Dahia & Romero MPLA(99)gq/98 [curvature];
    Fursaev et al PRD(13)-a1306 [squashed cones].
  @ Singular metrics, distributional curvature: in Penrose in(72);
    Taub pr(80);
    Vickers & Wilson CQG(99)gq/98;
    Garfinkle CQG(99)gq;
    Steinbauer mp/01-proc [impulsive gravitational waves];
    Pantoja & Rago IJMPD(02)gq/00;
    LeFloch & Mardare PM(07)-a0712;
    Traschen CQG(09)-a0809 [codimension-2];
    Steinbauer & Vickers CQG(09)-a0811 [lorentzian, distributional in the sense of Colombeau];
    Steinbauer NSJM-a0812-conf;
    Gravanis & Willison JMP(09)-a0901;
    Stoica IJGMP(14)-a1105,
    AP(14)-a1205 [dimensional reduction at singularities];
    Vickers JGP(12);
    Stoica PhD(13)-a1301;
    > s.a. general-relativity solutions with matter;
      gravitational-wave solutions [impulsive]; regge
      calculus [piecewise flat]; types of singularities.
  @ Observer-dependent geometries:
    Hohmann a1403-in [rev].
  @ Type-changing metrics:
    Aguirre-Dabán & Lafuente-López DG&A(06);
    Aguirre et al JGP(07) [transverse Riemann-Lorentz manifolds];
    > s.a. modified general relativity [signature change].
  @ Statistical spacetime: Calmet & Calmet TCS(04)mp [metric].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 9 jul 2020