|  Axisymmetric / Axially Symmetric Spacetimes | 
In General
  > s.a. types of metrics; types of spacetimes
  / Circularity; models in canonical quantum gravity.
  $ Def: A spacetime is
    axisymmetric (axially symmetric) if it has an isometry group whose
    orbits are spacelike and closed.
  * Line element:
  @ References: Mars & Senovilla CQG(93)gq/02 [with conformal symmetry];
    Dain JPCS(11)-a1106 [numerical and analytical perspectives];
    Brink et al PRD(13)-a1303 [rev];
    Beetle & Wilder a1401
      [characterization and general properties].
As Solutions of Einstein's Equation
  > s.a. general relativity solutions with symmetries;
  generating solutions; gravitational energy.
  * Status: 1983, There
    are many axially symmetric vacuum solutions, but we don't know of
    any asymptotically flat one with matter of compact support.
  * Gamma metric: A
    two-parameter family of axially symmetric, static solutions of Einstein's
    equation found by Bach; Contains the Schwarzschild solution for a particular
    value of one of the parameters, that rules a deviation from spherical symmetry.
  * Other examples:
    Cylindrically symmetric (e.g., simple cosmic string solutions); Stationary
    and static; The Kerr, and Kerr-Newman metrics.
  @ General references: Synge 60;
    Tomimatsu & Sato PTP(73);
    MacCallum ed-85;
    Van den Bergh & Wils CQG(85);
    Waylen PRS(87) [vacuum, time-dependent];
    Lubo ht/01 [U(1) gauge theory];
    Antoci et al CQG(01)gq,
    AN(03)gq/01 [Bach's gamma metric];
    Dain JDG(08),
    CQG(12) [black holes, geometric inequalities];
    Witten a1607 [vacuum, new formulation];
    Gudapati GRG(18) [with cosmological constant];
    Gambini et al CQG(19)-a1812 [in terms of real Ashtekar-Barbero variables].
  @ Non-stationary:
    Wagh & Muktibodh gq/99;
    Hollands CQG(12)-a1110
      [n-dimensional, horizon area-angular momentum inequality].
  @ Static: Waylen PRS(82) [vacuum, general solution];
    Gutsunaev et al G&C(04) [electrovac];
    Hernández-Pastora & Ospino a1010/GRG [vacuum];
    González & López-Suspes a1104 [stability of equatorial circular geodesics];
    Hernández-Pastora et al CQG(16)-a1607 [procedure];
    Turimov et al PRD(18)-a1810 [scalar field].
  @ Stationary, vacuum: Dain CQG(06)gq/05 [as critical points of the total mass];
    Harmark PRD(04)ht,
    Harmark & Olesen PRD(05)ht [D ≥ 4, sources].
  @ Stationary, fluid: Mars & Senovilla CQG(94)gq/02,
    CQG(96)gq/02;
    Kyriakopoulos MPLA(99) [fluid Petrov I];
    Makino a1908.
  @ Stationary, other matter:
    Ernst PR(68),
    PR(68);
    Belinskii & Zakharov JETP(79);
    Van den Bergh & Wils CQG(85) [axis];
    Meinel & Neugebauer PLA(96)gq/03;
    Schaudt & Pfister PRL(96) [boundary-value problem solvable];
    Turakulov & Dadhich MPLA(01)gq [magnetic dual of Kerr];
    Bonnor CQG(02)gq [2 massless spinning particles];
    García & Campuzano PRD(02) [conformally flat],
    gq/03 [classification];
    Doran & Lasenby CQG(03);
    Gutsunaev & Hassan G&C(03) [vacuum];
    Harmark PRD(04)ht [D ≥ 4];
    Assafari et al a1606 [constant Ricci scalar].
  @ Electrovac: Gopala Rao JPA(74) [from vacuum Weyl solutions];
    Dadhich & Turakulov CQG(02) [with separable equations of motion];
    Goyal & Gupta PS(12).
  @ Cylindrically symmetric:
    Sharif JKPS(00)gq/07 [static, pfluid];
    Sharif & Aziz IJMPA(05)gq,
    IJMPD(05)gq;
    > s.a. Conformal Gravity.
  @ Properties: Chandrasekhar & Friedman ApJ(72) [stability];
    Carot CQG(00) [rev];
    Radinschi gq/02 [Møller energy].
  @ Related topics: von der Gönna & Pravdová JMP(00)gq [asymptotically flat, null dust];
    Barnes CQG(01)gq [symmetry groups].
  @ Higher-dimensional:
    Tan BSc(03)-a0912
      [D−2 orthogonal commuting Killing vectors in D dimensions];
    Charmousis & Gregory CQG(04)gq/03 [arbitrary];
    Godazgar & Reall CQG(09)-a0904 [algebraically special];
    Delice et al GRG(13)-a1205 [cylindrically symmetric or Kasner-type, electrovac].
  > Other metrics:
    see black holes; cosmic strings;
    cosmological models in general relativity [Einstein-Straus];
    kerr-newman spacetime; Manko-Novikov
    Solutions; models in numerical relativity; multipoles;
    Papapetrou Solution; solutions of general relativity
    [Einstein-Yang-Mills].
Ernst Equation > s.a. black holes;
  general relativity solutions; lanczos tensor.
  * Idea: A method
    for generating axisymmetric solutions in general relativity with
    electromagnetic charge from axisymmetric vacuum spacetimes.
  $ Def: The equation for the
    Ernst potential ε = f + i ψ given by
Re ε ∇(ρ∇ε) = ρ ∇ε · ∇ε .
  * Applications: It
    arises in the stationary axisymmetric reduction of real general
    relativity, or of self-dual Yang-Mills theory.
  @ General references: Ernst PR(68),
    PR(68) [vacuum and electrovac];
    Korotkin & Nicolai PRL(95)ht/94 [Hamiltonian form];
    Klein & Richter JGP(97),
    JGP(99)gq/98 [Riemann-Hilbert form];
    Barbosa-Cendejas et al a1103-conf [matrix generalization];
    Astorino JHEP(12)-a1205 [with cosmological constant].
  @ Geroch conjecture: Hauser & Ernst GRG(01)gq/00 [hyperbolic, proof].
  @ Solutions: Meinel & Neugebauer CQG(95)gq/03 [asymptotically flat, with reflection symmetry];
    Klein & Richter PRL(97),
    PRD(98)gq [realistic];
    Masuda et al JPA(98) [Neugebauer-Kramer];
    Alekseev gq/99-conf [monodromy transform solution];
    Gariel et al CQG(02)gq/01 [new, vacuum];
    Ansorg et al PRD(02)gq/01 [Bäcklund-type];
    Bergamini & Viaggiu gq/03,
    CQG(04)gq/03;
    Sotiriou & Pappas JPCS(05)gq;
    Ernst et al CQG(06)gq/07,
    CQG(07)gq [equatorial symmetry/antisymmetry];
    Chruściel & Szybka APPB(08)-a0708 [smoothness at ergosurface].
  @ Related topics:
    Papachristou & Harrison PLA(94)
    and PLA(94) [Lax pair];
    Schief JPA(01) [dual as Loewner system].
Ernst Spacetime > s.a. cosmic censorship.
  * Idea: A solution
    of the Einstein-Maxwell equations describing two charged black holes
    accelerating apart in a uniform electric (or magnetic) field; As the
    field approaches a critical value, the black hole horizon appears to
    touch the acceleration horizon.
In Other Theories > see brans-dicke theory; higher-order theories; teleparallel gravity; yang-mills gauge theory.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 12 jan 2020