|  Cosmological Singularities | 
In General
  @ General references:
    Ove PRD(89) [expanding spacetimes];
    Tchapnda CQG(04) [Einstein-Vlasov-cosmological constant];
    Kotsakis & Klaoudatou JPCS(05)gq [rev],
    JGP(07)gq/06 [and Bel-Robinson energy];
    Małkiewicz & Piechocki CQG(06) [quantum particle as probe];
    Dąbrowski & Balcerzak gq/07-MGXI;
    Uggla a0706-MGXI;
    Belinski AIP(10)-a0910 [rev];
    Fernández-Jambrina & Lazkoz a1001-MG12 [rev];
    Belinski IJMPA(14);
    Bars et al PRD(14)
      [tracing the classical cosmological evolution from big crunch to big bang];
    Cherkas & Kalashnikov TP(17)-a1504 [Gowdy, initial conditions at a cosmological singularity];
    Belinski & Henneaux 17;
    Elizalde Gal(18)-a1801 [history and classification of singularities];
    > s.a. Big Freeze; FLRW geometry;
      singularities [history].
  @ Future singularities:
    Kotsakis & Klaoudatou JGP(05);
    Cotsakis gq/06-proc;
    Beltrán Jiménez et al EPJC(16)-a1602 [cosmic doomsday].
  @ Sudden singularities:
    Lake CQG(04);
    Barrow CQG(04)gq;
    Fernández-Jambrina & Lazkoz PRD(04)gq;
    Barrow et al CQG(10)-a1004 [solution near a sudden singularity];
    de Haro et al PRD(12)-a1204 [in semiclassical gravity];
    Barrow & Cotsakis PRD(13)-a1307 [no geodesic incompleteness].
  @ FLRW milestones: Cattoën & Visser CQG(05)gq,
    JPCS(07)gq/06;
    Cattoën MSc-gq/06;
    Cattoën & Visser gq/06-MGXI [behavior].
  @ String-inspired:
    Larsen & Wilczek PRD(97),
    Cornalba et al NPB(02) [resolution];
    Liu et al gq/03;
    Sánchez IJMPA(03)ht.
Approach to the Singularity > s.a. quantum-gravity phenomenology;
  singularities [avoidance, extending the spacetime].
  * BKL conjecture:
    In spatially inhomogeneous cosmologies, collapse is dominated by local
    Kasner or Mixmaster behavior; 2001, generic Bianchi IX spacetimes converge
    towards the Mixmaster attractor; 2016, Almost every Bianchi VIII and IX
    vacuum solution forms particle horizons and converges to the Mixmaster
    attractor.
  @ General references:
    Lifshitz & Khalatnikov AiP(63);
    Belinskii & Khalatnikov JETP(69),
    et al AiP(70),
    AiP(82) [singularity in time];
    Nolan CQG(01)gq [isotropic];
    Deshingkar et al PRD(02)gq/01 [spherical];
    Garfinkle PRL(04)gq/03 [numerical];
    Khalatnikov et al JCAP(03) [2-fluid];
    Garfinkle IJMPD(04)gq-GRF;
    Andersson et al PRL(05)gq/04 [asymptotic silence];
    Heinzle et al ATMP(09)-gq/07 [billiard attractor];
    Damour & de Buyl PRD(08)-a0710 [using Iwasawa variables];
    Henneaux a0806-fs
      [hyperbolic Coxeter groups and Lorentzian Kac-Moody algebras];
    Ashtekar et al CQG(09)-a0811,
    PRD(11)-a1102 [in canonical general relativity];
    Reiterer & Trubowitz a1005 [BKL and Bianchi VIII-IX models];
    Damour & Lecian PRD(11)-a1011,
    IJMPcs(12)-a1103 [statistical properties of cosmological billiards];
    Galimova a1403 [BKL for Bianchi VIII and IX];
    Brehm a1606
      [particle horizons for Bianchi VIII and IX];
    Goldstein & Piechocki a2103 [exact solution of the dynamical equations].
  @ Inhomogeneous:
    Montani CQG(95);
    Berger gq/98-conf;
    Berger et al MPLA(98)gq;
    Weaver et al PRL(98);
    Berger gq/01-proc.
  @  2-torus symmetry:
    Weaver et al gq/01-MG9;
    Berger et al PRD(01)gq.
  @ U(1) symmetry: Berger & Moncrief PRD(98)gq [polarized],
    PRD(98) [generic];
    Isenberg & Moncrief CQG(02)gq [vacuum];
    Berger CQG(04)gq/03.
  @ Other types: Parnovsky CQG(90) [timelike];
    Andersson & Rendall CMP(01)gq/00 [quiescent];
    Parnovsky a1209 [timelike];
    Rendall a1212-proc
      [construction of oscillatory singularities];
    Klinger MS-a1507 [non-chaotic];
    > s.a. bianchi models; chaos
      in bianchi models; models in numerical relativity.
  @ Various theories: Berger PRD(00)gq/99 [with scalar field];
    Damour et al CQG(03)ht/02 [Einstein-dilaton-p-form];
    Benini et al CQG(05)gq [higher dimensions];
    Fleig & Belinkski a1811 [2+1 dimensions].
Homogeneous Models
  > s.a. bianchi cosmologies [whimper];
  bianchi models;
  fields in FLRW spacetimes.
  * Bianchi IX: The
    "attractor theorem" states that the past asymptotic behavior of generic
    type IX solutions is governed by Bianchi type I and II vacuum states.
  @ References:
    Collins & Ellis PRP(79);
    De Rop GRG(89) [VI & VII];
    Rendall CQG(97)gq;
    Ringström AIHP(01)gq/00 [IX];
    Abramo et al IJTP(03)gq,
    PRD(03) [non-minimal scalar];
    Montani et al IJMPA(08)-a0712 [IX, classical and quantum];
    Heinzle & Uggla CQG(09)-a0901,
    CQG(09)-a0901 [Bianchi IX],
    GRG(13) [spike statistics in Kasner sequences];
    > s.a. Silent Universes.
Other Models
  > s.a. brane world; gowdy spacetime.
  @ Isotropic singularities:
    Goode & Wainwright CQG(85);
    Tod CQG(90);
    Goode et al CQG(92);
    Scott & Ericksson gq/98-proc;
    Ericksson & Scott GRG(00)gq/01 [shear-free],
    GRG(02)gq/03 [and matter];
    Anguige & Tod AP(99)gq,
    AP(99)gq;
    Anguige AP(00)gq/99;
    Klaoudatou & Cotsakis JPCS(07)gq/06-proc [and Bel-Robinson energy];
    Barrow & Middleton PRD(07)gq [in quadratic gravity, stable];
    Tod CQG(07)-a0705 [with cosmological constant];
    Lübbe & Tod AP(08) [polytropic perfect fluid Bianchi models, global extension theorem].
  @ Inhomogeneous: Rendall GRG(95)gq/94 [plane symmetry with scalar field],
    gq/98-proc;
    Berger & Moncrief PRD(00)gq,
    PRD(00)gq [U(1) symmetry].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 30 mar 2021