|  Types of Geodesics | 
In General 
  > see geodesics [quantum corrections]; projective structures.
  * Homogeneous geodesics:
    In any homogeneous (Riemannian or pseudo-Riemannian) manifold, there is
    at least one homogeneous geodesic through each point.
  * Compact Lorentzian manifolds:
    All lightlike geodesics are periodic, while there are closed and non-closed
    spacelike and timelike geodesics.
  @ Homogeneous geodesics:
    Dusek JGP(10).
  @ Conformal geodesics:
    Friedrich & Schmidt PRS(87);
    Friedrich CMP(03)gq/02;
    Tod JGP(12) [examples].
  @ Riemannian manifolds: Berger 65;
    Bolsinov & Jovanović in(04)mp/03 [integrability];
    LaGatta & Wehr CMP(14)-a1206,
    a1206 [random perturbations of Euclidean space].
  @ Lorentzian manifolds:
    Larsen JDG(96) [sic];
    Candela & Sánchez in(08)m.DG/06 [rev];
    Bolsinov et al JLMS(09)-a0806 [Fubini theorem, for pseudo-Riemannian metrics];
    Del Barco et al JGP(14) [compact Lorentzian manifolds];
      > s.a. finsler geometry.
  @ 2D: Knieper & Weiss JDG(94) [S2, positive topological entropy];
    Lévay JPA(00),
    JPA(00) [negative curvature Riemann surfaces];
    Rowland EJP(06) [simple];
    Ying & Candès JCP(06) [computation];
    Müller PLA(12)
      [on closed surfaces, numerical, and chaotic regions].
  @ 3D:
    Bose et al CG(12) [3D polyhedral surfaces].
  > Related topics: see Congruence
    and Congruence Expansion; Totally Geodesic
    [mapping, submanifold].
Null Geodesics > s.a. coordinates [based on a null geodesic];
  quantum spacetime; spacetime subsets [and complex world-lines].
  * Set of null geodesics:
    If \((M,g)\) is a globally hyperbolic (d+1)-dimensional spacetime, this
    set \(\cal N\) is naturally a smooth \((2d-1)\)-dimensional contact manifold.
  * Sky: The sky of an event is the
    subset of \(\cal N\) defined by all null geodesics through that event, and is an
    embedded Legendrian submanifold of \(\cal N\) diffeomorphic to a S\(^{d-1}\).
  @ General references: Low JMP(89);
    Urbantke JMP(89);
    Frittelli & Newman gq/98-fs [time of arrival].
  @ Types of spacetimes: Frittelli et al CQG(98) [asymptotically flat, conjugate points];
    Hall & Lonie JMP(08) [FLRW spacetimes];
    Décanini et al PRD(10)-a1002 [circular, static spherically symmetric black holes];
    Gibbons & Vyska CQG(12)-a1110 [spherically symmetric, and Weierstraß elliptic functions];
    Bikwa et al MNRAS(12)-a1112 [FLRW spacetimes];
    Kraniotis GRG(14)-a1401 [Kerr-Newman (-de Sitter) black holes];
    Paganini et al a1611 [Kerr];
    Charbulák & Stuchlík EPJC(17)-a1702 [Kerr-de Sitter];
    Gal'tsov & Kobialko PRD(19)-a1901 [Kerr and Kerr-Newman].
  @ Null geodesic congruences: Adamo et al LRR(09)-a0906,
    LRR(12) [asymptotically shear-free];
    Adamo & Newman CQG(11) [generalized good cut equation];
    Newman GRG(20) [in Minkowski spacetime].
  @ Properties of skies: Natário CQG(02)gq/01 [skies];
    Natário & Tod PLMS(04)gq/02;
    Bautista et al CQG(15)-a1411 [partial order on the space of skies, and the Malament-Hawking theorem].
Special Types of Spacetimes
  > s.a. connections [non-commutative]; graph theory;
  regge calculus; types of lorentzian metrics.
  * Stationary axisymmetric spacetimes:
    The motion of a test particle in a stationary axisymmetric gravitational field is generally
    non-integrable unless, in addition to the energy and angular momentum about the symmetry axis,
    an extra non-trivial constant of motion exists, as in the Kerr spacetime.
  @ Stationary axisymmetric spacetimes: Brink PRD(08)-a0807 [vacuum];
    Markakis MNRAS(14)-a1202 [constants of the motion];
    Pineda et al a1409-proc;
    > s.a. solutions with symmetries [static].
  @ Other black-hole spacetimes: Marck CQG(96)gq/95 [Schwarzschild-Kerr];
    Cardoso et al PRD(09)-a0812 [stability, Lyapunov exponents, and quasinormal modes];
    Slany et al IJMPA(09) [Kerr-de Sitter];
    Radosz et al MPLA(11) [black holes in Hořava-Lifshitz gravity];
    Chakraborty & Chakraborty CJP(11)-a1109 [spherically symmetric, test-particle motion and light bending];
    Yang & Wang A&A(14)-a1311 [Kerr-Newman spacetime, numerical code ynogkm for timelike geodesics];
    Pradhan CQG(15)-a1402 [Kerr-Newman-Taub-Nut spacetime];
    Hackmann a1506-proc,
    Hackmann & Lämmerzahl AIP(14)-a1506 [Plebański-Demiański family of solutions];
    Semerák & Suková in(15)-a1509 [around deformed black holes];
    Salazar & Zannias PRD(17)-a1705 [Kerr-de Sitter];
    Liu et al CQG(17)-a1706 [Kerr-Newman spacetime, neutral particles];
    Eskin RVMP(19)-a1807 [Reissner-Nordström spacetime];
    > s.a. spinning particles.
  @ Bianchi metrics: Nilsson et al GRG(00)gq/99
    = GRG(00) [dynamical system];
    Valent & Yahia CQG(07) [integrable flows];
    > s.a. bianchi models.
  @ Cosmological metrics: Barrow & Levin PLA(97) [k = −1 FLRW models];
    Podolský & Belán CQG(04) [Kundt spacetimes];
    Pereira & Sampson GRG(12)-a1110 [de Sitter spacetime, generalized geodesics];
    Sokołowski & Golda IJMPD(16)-a1602 [in AdS spacetime].
  @ Other metrics: Moraes PLA(96) [dislocation];
    Herrera FPL(05) [quash-spherical];
    D'Afonseca et al CQG(05)gq [Weyl-Bach ring solution];
    Kiosak & Matveev CMP(09)-a0806 [geodesically rigid];
    Andrade & de Berredo-Peixoto G&C(13)-a1203 [spherically symmetric dislocation];
    Lim PRD(14)-a1405 [vacuum C-metric];
    Podolský et al CQG(15)-a1409 [non-expanding impulsive gravitational waves];
    Bambhaniya et al PRD(19)-a1908 [with naked singularities].
  @ Generalized settings: Ulhoa et al GRG(14)-a1312 [non-commutative spacetime];
    Arrighi & Dowek a1507 [discrete spacetime];
    > s.a. finsler geometry [Randers spaces]; geodesics.
   Black-hole metrics:
    see chaotic motion; particles
    in kerr spacetimes; particles in schwarzschild spacetimes;
    reissner-nordström spacetimes.
 Black-hole metrics:
    see chaotic motion; particles
    in kerr spacetimes; particles in schwarzschild spacetimes;
    reissner-nordström spacetimes.
   Other metrics: see C-metric;
    FLRW metrics; gödel solution;
    gowdy spacetime; Lemaître-Tolman-Bondi
    Solution; Lewis Metric; multipole moments.
 Other metrics: see C-metric;
    FLRW metrics; gödel solution;
    gowdy spacetime; Lemaître-Tolman-Bondi
    Solution; Lewis Metric; multipole moments.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 9 jan 2021