|  Cosmic Censorship Conjecture | 
In General > s.a. black-hole formation;
  gravitational collapse.
  * Idea: Naked singularities form
    with zero probability in the gravitational collapse of astrophysical objects.
  * Motivation: Linearized
    Schwarzschild and Kerr give non-singular exteriors; No non-highly-symmetric
    counterexample has been found; Theoretical importance of black holes.
  * Physical version: All
    singularities of gravitational collapse are hidden within black holes.
  * Strong version (Penrose): The
    spacetime development of generic data is globally hyperbolic (no non-globally
    hyperbolic extensions allowed).
  * Remark: Physical arguments may
    lead to conjecture even stronger versions.
  @ Reviews: Clarke in(93),
    CQG(94);
    Wald gq/97-conf;
    Singh JAA(99)gq/98-proc;
    Królak PTPS(99)gq-proc;
    Joshi MPLA(02)gq-conf;
    Joshi a1010;
    Isenberg a1505-in [strong censorship];
    Landsman a2101 [historical].
  @ Simple: Shapiro & Teukolsky AS(91).
  @ General references: Kong et al EPJC(14)-a1310 [difficulty of carrying out tests];
    Hamid et al CQG(14)-a1402
    & CQG+ [role of the Weyl curvature].
Progress Toward a Proof or General Understanding
  * Direct approach: Prove
    (i) Long-time existence theorem (e.g., using energy theorem), (ii)
    Non-extendibility; & Choquet, Chruściel, Isenberg, Moncrief.
  * Numerical approach:
    & B Berger; & Cardoso et al, non-linear effects may not suffice
    to save the strong cosmic censorship conjecture.
  * Perturbative analytical
    approach: Multiple scale methods; gives indications that polarized
    Gowdy is velocity-dominated; & Grubisic.
  * Special cases:
    Something, but not much, is known for U(1) symmetry (1995).
  * General case: 1995,
    Only stability of Minkowski known [@ Christodoulou & Kleinerman
    93].
  *  Mechanism: The shear scalar
    plays a crucial role in determining the fate of a collapsing object; If the
    shear is sufficiently strong, it can conspire with inhomogeneities and delay
    the formation of trapped region so much that the geodesics can encounter a
    singularity before the apparent horizon forms.
  @ Results: Giambò et al CQG(02)gq/01 [spherical case];
    Rudnicki et al MPLA(06) [weak censorship];
    Acquaviva et al a1508 [support from gravitational thermodynamics];
    Luna et al PRD(19)-a1810 [Einstein-Maxwell-scalar, spherical, numerical];
    Hod IJMPD-a2012-GRF [compact proof].
  @ Mechanism: Joshi et al PRD(02)gq/01,
    PRD(04) [role of the shear scalar].
Specific Types of Spacetimes
  > s.a. causality violations; gowdy spacetime;
  Gravastar; modified theories;
  wormhole solutions.
  @ General references: Chruściel & Rendall AP(95)gq/94;
    Rendall AP(94);
    Malec CQG(96);
    Horowitz & Sheinblatt PRD(97) [Ernst spacetime];
    Caldarelli PRD(98) [toroidal quantum black holes];
    Dafermos & Rendall gq/06
      [T2-symmetric cosmologies with collisionless matter].
  @ Collapse: Rudnicki PLA(96),
    Rudnicki & Zieba PLA(00) [Kerr-like];
    Singh gq/96-proc;
    Deshingkar et al GRG(98)gq [Szekeres, quasi-spherical dust];
    Barve et al CQG(99)gq [dust];
    Christodoulou AM(99) [scalar field];
    Ghosh IJMPD(05) [dust, in de Sitter].
  @ Collapse, higher-dimensional: Ghosh & Saraykar PRD(00)gq/01 [radiation];
    Goswami & Joshi PRD(04)gq/02 [spherical];
    Goswami & Joshi PRD(04)gq,
    Mahajan et al PRD(05)gq [dust, removal of singularities];
    Yoo et al PRD(05)gq [5D, counterexample?];
    Patil & Zade IJMPD(06) [spherical];
    Mkenyeleye et al PRD(15)-a1503.
  @ And topology change:
    Joshi & Saraykar PLA(87);
    > s.a. models for topology change.
  @ Black holes: Ford & Roman PRD(90) [black holes and moving mirrors];
    Wagh  & Maharaj GRG(99)gq [Vaidya-de Sitter];
    Tóth GRG(12)
      [thought experiment on overcharging or overspinning a Kerr-Newman black hole];
    Zimmerman et al PRD(13) [self-force as a cosmic censor];
    Cardoso & Queimada GRG(15)-a1511 [spinning up black holes close to the Kerr solution];
    Hod NPB(19)-a1801 [charged];
    Rahman et al JHEP(19)-a1811 [higher-dimensional];
    > s.a. 3D black holes [BTZ].
  @ Quantum version: Caldarelli PRD(98) [toroidal quantum black holes];
    Casadio et al PLB-a1503;
    Emparan a2005-GRF;
    > s.a. singularities in quantum gravity.
Violations, Counterexamples
  > s.a. types of singularities [genericity of naked singularities].
  * Idea: Counterexamples can be
    obtained with perfect fluids, as well as marginal ones with a scalar field;
    But must impose regularity conditions on the matter and look at realistic
    non-symmetric situations to avoid spurious violations.
  @ General references:
    Yodzis et al CMP(73),
    CMP(74) [perfect fluid];
    Roberts GRG(89),
    Christodoulou AM(94) [scalar field];
    Husain GRG(98);
    Jacobson & Sotiriou JPCS(10)-a1006 [on overspinning or overcharging a black hole];
    Barausse et al PRD(11)-a1106 [effect of radiation reaction and self-force];
    Miyamoto et al PTEP(13)-a1108 [astrophysical censorship];
    Dafermos & Luk a1710;
    Cardoso et al PRL(18)
    + Reall Phy(18)
      [indications of violation from perturbations of Reissner-Nordström-de Sitter black holes];
    Cardoso et al PRD(18)-a1808,
    Mo et al PRD(18)-a1808 [in charged black-hole spacetimes];
    Goulart a1809 [in Einstein-Maxwell-dilaton theory];
    Destounis PLB(19)-a1811 [with charged fermionic fields];
    Andrade et al JHEP(19)-a1812 [higher-dimensional black hole collisions];
    Fernandez a2007-PhD [semiclassical approach].
  @ Violations of strong censorship:
    Etesi a1905 [physical interpretation];
    Destounis et al a2006;
    Casals & Marinho a2006 [in rotating black holes];
    Luna et al a2012.
  @ Violations of weak censorship: Eperon et al a1906;
    Andrade et al a2011 [in black-hole collisions].
  @ In asymptotically AdS spacetimes: Niehoff et al CQG(16)-a1510 [and the superradiant instability of Kerr-AdS black holes];
    Crisford & Santos PRL(17)-a1702
    + news sn(17)may [in 4D AdS];
    Horowitz et al CQG(16)-a1604 [4D Einstein-Maxwell theory].
  @ Inhomogeneous spherical dust: Mena et al PRD(00)gq [genericity].
  @ With quantum particles: Matsas et al PRD(09)-a0905 [from particle tunneling];
    Richartz & Saa PRD(11)-a1109
      [scattering of spin-0 and spin-1/2 particles by a near-extreme Reissner-Nordström black hole];
    Pappas AHEP(13)-a1312 [quantum considerations].
  @ Generic violation? Hertog et al PRL(04)gq/03 [proposal],
    gq/04 ["gap"];
    Alcubierre et al gq/04 [loophole],
    gq/04 [argument review];
    Garfinkle PRD(04)gq,
    PRD(04)gq [simulation];
    Etesi IJGMP(15)-a1503 [from exotic \({\mathbb R}^4\)s].
  @ Critique of counterexamples:
    Unnikrishnan GRG(94),
    reply Joshi & Singh GRG(95);
    Brady et al PRL(98)gq [Cauchy horizon instability];
    Hod PRL(08)-a0805;
    Barausse et al PRL(10)
    + news disc(10)dec;
    Horowitz & Santos a1901
    [counterexamples removed if weak-gravity conjecture holds].
Formulations and Variations > s.a. 2D gravity.
  * Lorentz-violating theories:
    At least in some cases of spinning spacetimes a universal horizon forms between
    the outer and (would-be) inner horizons.
  @ Proposals, formulations: Penrose RNC(69);
    Israel FP(74);
    Królak CQG(86),
    JMP(87);
    Wagh gq/02;
    Etesi PLB(02) [strong censorship and computability];
    Santiago-Germán gq/05 [strong];
    Etesi IJTP(13)-a1205 [strong, proof of the Geroch-Horowitz-Penrose formulation].
  @ String-inspired: Maeda et al PRL(98)gq;
    Gutperle & Kraus JHEP(04)ht,
    Frolov PRD(04)ht [numerical].
  @ In other theories: Vaz & Witten CQG(96)gq/95 [2D dilaton gravity];
    Nakao et al PLB(03) [brane world];
    Ortín FdP(07)ht/06 [unbroken supersymmetry excludes most naked singularities];
    Meiers et al PRD(16)-a1511 [Lorentz-violating theories];
    Tavakoli et al PRD-a2012 [5D braneworld with Gauss-Bonnet term].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 18 apr 2021