|  Gravitational Energy-Momentum | 
In General
  > s.a. energy-momentum tensors; expressions for gravitational
  energy-momentum [including other theories]; stress-energy pseudotensors.
  * Motivation: Just as in
    Newtonian theory one gets mass from the gravitational field, in general
    relativity it is reasonable to get also momentum and angular momentum;
    If there is matter, the expressions we will write down give the total
    (i.e., including matter) energy-momentum.
  * Open universes: One
    could try, bearing in mind the Einstein equation,
Pm = ∫Σ T m0 dv = \(1\over8\pi G\)∫Σ Gm0 dv ,
    but, unless ...
  * The situation: If spacetime
    is stationary, one can get an energy-momentum from the stress-energy tensor
    Tab, but otherwise one really
    faces the gravitational field energy problem and finds at most pseudotensors;
    In general, gavitational energy-momentum and related quantities cannot be given
    by integrals of a local density; Rather, they are quasi-local (associated with a
    closed 2-surface), have no unique formula, and have no reference-frame-independent
    description.
  * In closed universes: There is
    no generally accepted definition, but this does not mean that there is no
    evolution; 2012, Proposal by L B Szabados.
  > Related topics:
    see energy positivity; mass.
Specific Types of Spacetimes
  > s.a. asymptotic flatness; gravitational radiation.
  @ Asymptotically-flat spacetimes / isolated objects:
    Chruściel CMP(88);
    Dadhich & Narayan GRG(98)gq/97 [vanishing gravitational mass];
    Sharif NCB(04)ht/03 [black hole];
    Patashnick IJMPD(05)gq/04;
    Sharif & Fatima NCB(05)gq [Weyl metrics];
    Ge et al a1211;
    > s.a. minkowski space; solitons;
      teleparallel theories.
  @ Spherical symmetry:
    Sosnovskiy gq/05 [and cylindrical];
    Mirshekari & Abbassi MPLA(09)-a0808 [comparing energy-momentum prescriptions].
  @ FLRW spacetimes: Faraoni & Cooperstock ApJ(03)ap/02 [open];
    Garecki gq/06-MGXI,
    APPB(08)-a0708;
    Mitra GRG(10). 
  @ Other cosmological spacetimes: Gerhardt ATMP(06)m.DG/04 [asymptotically FLRW];
    Sharif & Fatima IJMPA(05) [Einstein-Maxwell];
    Nester et al PRD(08)-a0803 [homogeneous];
    Davis SA(10)jul [energy conservation and expansion-related redshift];
    Penrose GRG(11)
      [retarded mass/energy with a positive Λ];
    Nourinezhad & Mehdipour IJP(12)-a1202 [Bianchi IX models];
    Amsel & Gorbonos PRD(13)-a1209 [with a constant-curvature background, Wald-like formula];
    Szabados & Tod IJMPD(18)-a1808 [with a positive cosmological constant];
    > s.a. anti-de sitter spacetime [asymptotically AdS];
      de sitter spacetime; quasilocal energy.
  @ In closed universes: Szabados GRG(13)-a1212-proc [closed models, Bianchi I and IX];
    Szabados CQG(13)-a1306 [with a positive cosmological constant].
  @ With conical defects: Maluf & Kneip JMP(97)gq/95;
    Nucamendi & Sudarsky CQG(97)gq/96 [ADM];
    > s.a. singularities.
References
  > s.a. charges; energy [self-energy].
  @ General: Einstein PZ(14),
    PZ(18);
    Peters AJP(81)jun;
    in Wald 84;
    Ferraris & Francaviglia in(91);
    Nissani & Leibowitz IJTP(91) [covariant, localized];
    Gibbs gq/97 [covariant];
    Katz CQG(05)gq;
    Aldrovandi et al a0812
      [gravitational and inertial, teleparallel gravity]; 
    Jaramillo & Gourgoulhon ln(10)-a1001 [and angular momentum, rev];
    Rodrigues RPMP(12)-a1109-conf;
    Chen et al IJMPD(15)-a1507-in [covariant Hamiltonian formalism, and Poincaré gauge theories];
    Padmanabhan GRG(15)-a1506 [momentum density of spacetime];
    Shimizu MPLA(16)-a1601 [proposal];
    Bičák & Schmidt PRD(16)-a1602 [uniqueness];
    Wang a1605-conf [and center of mass];
    Acquaviva et al CQG(18)-a1802 [and gravitational thermodynamics];
    Goswami & Ellis CQG(18)-a1805 [energy-momentum transfer by the gravitational field];
    Chen et al IJMPD(18)-a1805-GRF [it is well defined];
    Curiel SHPMP-a1808;
    Lopes de Lima et al a1811;
    Wu & Zhang a1811-in;
    Chen et al a1912,
    a1912 [translation of 1918 papers by Felix Klein].
  @ Conservation laws:
    Palmer PRD(78);
    Nissani & Leibowitz PLA(88),
    IJTP(89);
    Bondi PRS(90);
    Wiesendanger a1102,
    a1103,
    a1103 [gravitational vs inertial energy-momentum];
    Epp et al CQG(13) [local vs quasilocal];
    Palese & Winterroth MG14(17)-a1601
      [nature of the law of conservation of energy, a problem posed by Hilbert, and Noether's theorem];
    Rowe a1912 [Emmy Noether's work];
    > s.a. conservation laws;
      gravity [theories with non-conserved energy-momentum].
  @ And Noether's theorem: Bamba & Shimizu IJGMP(16)-a1506;
    Deser a1902;
    De Haro a2103 [and energy-momentum pseudo-tensor].
  @ Doubting the reality: Infeld AP(59);
    Zel'dovich & Grishchuk SPU(88) + refs [debate];
    Cooperstock FP(92),
    MPLA(99)gq,
    AP(00)gq/99,
    FP(01);
    Hoefer SHPMP(00) [conceptual].
  @ Other dimensionalities: Haslhofer JGP(11) [mass-decreasing flow in dimension three];
    Barzegar et al PRD(17)-a1708 [higher-dimensional].
  @ With boundaries:
    Binz & Śniatycki CQG(86);
    Francaviglia & Raiteri CQG(02)gq/01.
  @ Negative energy density?
    Bonnor & Cooperstock PLA(89).
  @ The background question:
    Bombelli et al NPB(87);
    Hawking et al PRD(95) [Melvin];
    Hawking & Hunter CQG(96)gq;
    Katz & Lerer CQG(97)gq/96 [null infinity];
    Lam PhSc(11) [need for a background structure].
  @ Related topics: Geroch & Perng JMP(94)gq [arbitrary data];
    Bozhkov & Rodrigues GRG(95) [definition of inertial mass].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 31 mar 2021