|  Schwarzschild-de Sitter Spacetime | 
In General > s.a. solutions of
  einstein's equation / McVittie Metric.
  * Idea: The natural generalization of
    the Schwarzschild metric to the case of non-zero cosmological constant Λ.
  * Line element: It can be written in
    static form by replacing 1 − (2 GM/r) \(\mapsto\) 1 −
    (2 GM/r) − (Λ r2/3)
    in the Schwarzschild line element (> see schwarzschild
    geometry), and one obtains the Kottler metric; It can also be obtained from the McVittie
    metric, setting the expansion rate to be constant.
  * Extreme case: The parameters satisfy
    9Λ(GM)2 = 1 (in 4 spacetime dimensions).
Thermodynamics > s.a. black-hole
  thermodynamics; black-hole radiation.
  * Temperature:
    In d dimensions, the temperature is given by
T = (d−3) (rH ± γ2rH) / 4π ,
    where the upper (lower) sign holds in the Anti-de Sitter (de Sitter) case.
  @ General references:
    Brown et al PRD(94);
    Teitelboim ht/02-proc [and stability];
    Bolen & Cavaglià GRG(05)gq/04 [and gup];
    Urano et al CQG(09)-a0903 [first law].
  @ Entropy: Li NCB(01);
    Ghezelbash & Mann JHEP(02)ht/01;
    Shankaranarayanan PRD(03)gq;
    Corichi & Gomberoff PRD(04)ht/03 [bounds];
    Bolen & Cavaglià GRG(05)gq/04 [and gup];
    Sekiwa PRD(06) [thermal cosmological constant].
  @ Radiation:
    Gibbons & Hawking PRD(77);
    Bousso & Hawking PRD(98);
    Hemming & Keski-Vakkuri PRD(01)gq/00;
    Jiang CQG(07)-a0705;
    Arraut et al CQG(09)-a0810 [two approaches];
    Drouot a1510 [for massive bosons];
    Pappas & Kanti PLB(17)-a1707;
    Robson et al a1902 [temperature, topological approach].
  @ Quantum: Nojiri & Odintsov PRD(99);
    Nojiri & Odintsov IJMPA(00)ht/99.
Perturbations > s.a. perturbations of schwarzschild spacetime.
  @ General references: Yoshino et al PRD(04)gq [Λ < 0].
  @ Quasinormal modes, Schwarzschild-de Sitter:
    Cardoso & Lemos PRD(03)gq [near-extremal];
    Suneeta PRD(03)gq;
    Maassen van den Brink PRD(03)gq;
    Zhidenko CQG(04)gq/03;
    Castello-Branco & Abdalla gq/03; Roy
    Choudhuri & Padmanabhan PRD(04)gq/03,
    comment Batic et al PRD(11)-a1105 [level spacing];
    Konoplya & Zhidenko JHEP(04) [high overtones];
    Medved & Martin GRG(05) [treatments].
  @ Quasinormal modes, Schwarzschild-AdS:
    Horowitz & Hubeny PRD(00);
    Cardoso & Lemos PRD(01)gq [electromagnetism and gravity];
    Konoplya PRD(02) [small black hole];
    Moss & Norman CQG(02)gq [dS/AdS];
    Musiri & Siopsis CQG(03)ht,
    PLB(03),
    PLB(03)ht;
    Cardoso et al PRD(03)gq,
    JMP(04);
    Jing gq/05,
    & Pan PRD(05) [Dirac fields];
    Musiri et al PRD(06);
    Daghigh JHEP(09)-a0901.
Similar Metrics > s.a. lovelock gravity.
  * Nariai solutions: Degenerate
    or extreme versions of the Schwarzschild-de Sitter metric; They are conformally non-flat,
    singularity-free perfect fluid expanding cosmological models, satisfying the weak energy condition.
  @ Nariai solutions: Dadhich gq/01;
    Ortaggio PRD(02)gq/01 [impulsive waves];
    Beyer CQG(09)-a0902 [generalized, positive cosmological constant];
    Beyer a1012-MG12
      [perturbations and the cosmic no-hair conjecture];
    Fernando MPLA(13)-a1408,
    IJMPD(14) [with quintessence].
  @ With negative mass: Belletête & Paranjape IJMPD(13)-a1304-GRF.
  @ Other modified metrics:
    Wang et al CQG(09) [quantum deformed];
    Fennen & Giulini CQG(15)-a1408 [static two-mass solution using Nariai spacetime].
References
  > s.a. tests of general relativity with light.
  @ General: Kottler AdP(18);
    Socolovsky a1711 [rev];
    Bugden & Paganini a1810 [the \(\Lambda\to0\) limit].
  @ Geometry, coordinates:
    Kamimura et al MPLA(91) [connection formulation];
    Lake CQG(06)gq/05 [maximal extension];
    Siddiqui GRG(11)-a1009 [foliation by flat spacelike hypersurfaces];
    Brendle IHES-a1105
      [hypersurfaces of constant mean curvature];
    Fernandes et al a1910 [extremal surfaces];
    Manjunatha et al IJGMP(20)-a2006 [curvature invariants].
  @ Test particles, geodesics:
    Stuchlík & Hledík PRD(99);
    Kraniotis & Whitehouse CQG(03) [and precession];
    Béssa & Lima IJMPD(04)gq [turning points];
    Carvalho et al MPLA(04),
    Cruz et al CQG(05)gq/04 [Schwarzschild-AdS];
    Sultana & Dyer GRG(05);
    Hackmann & Lämmerzahl PRL(08)-a1505,
    PRD(08)-a1505 [complete analytic solution];
    Dymnikova et al G&C(08) [overview];
    Klein & Collas PRD(10) [recessional velocities and Hubble's law];
    Arakida IJTP(13)-a1212,
    comment Ovcherenko & Silagadze UJP(16)-a1511 [and periastron precession];
    > s.a. spinning particles;
      tests of general relativity with orbits.
  @ Other classical matter:
    Islam PLA(83) [planet and light motion];
    Bijalwan a1108 [interior].
  @ Fields, scalar: Brady et al PRD(99)gq [falloff];
    Brevik & Simonsen GRG(01) [numerical].
  @ Fields, other: Brady et al PRD(97) [tails];
    Molina et al PRD(04)gq/03 [scalar, electromagnetic, and gravitation];
    Lyu & Gui IJTP(04),
    NCB(04),
    PS(07) [Dirac fields];
    Mackay et al EPL(05)ap [vp < 0 electromagnetic waves];
    Keller a1706 [electromagnetic, decay of solutions].
  @ Thermal properties: Lin ht/98-conf;
    Ghezelbash & Mann JHEP(02)ht/01 [action, entropy, and dS-cft].
  @ In other theories: Kodama & Arraut PTEP(14)-a1312 [in dRGT massive  gravity theory, stability];
    Addazi & Capozziello MPLA(16)-a1602 [in f(R) gravity]
  @ Related topics: Podolský GRG(99)gq [extreme];
    Nayak et al PRD(01)gq/00 [in Einstein universe];
    Lake PRD(02)gq/01 [lensing];
    Bytsenko & Goncharov IJMPA(02)gq [monopoles and Hawking radiation];
    Zhang et al ChPL(12)-a0911 [tunneling to de Sitter space].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 11 jan 2021