|  Many-Particle Quantum Systems | 
In General > s.a. quantum statistical
  mechanics; semiclassical quantum mechanics.
  * Principle of local distinguishability:
    An arbitrary physical state of a bipartite system can be determined by the combined
    statistics of local measurements performed on the subsystems.
  * History: Founded by papers by Dirac
    and Heisenberg on identical particles.
  * Examples: Atomic or molecular clusters,
    atoms or molecules, nuclei, nucleons; Systems with strong pair correlations can be
    modeled by the exactly solvable Richardson-Gaudin models.
  @ Books: March et al 67;
    Fetter & Walecka 71;
    Thirring 83;
    Strocchi 85 [infinite];
    Koltun & Eisenberg 88;
    Korepin et al 93;
    Mahler & Weberruß 98 [networks];
    Zagoskin 98;
    Fabrocini et al 02;
    Coleman 16 [intro, r PT(17)];
    Shuryak 18 [in a nutshell];
    Kuramoto 20 [strong correlations]. 
  @ General references: Dirac PRS(29);
    Hunziker & Sigal JMP(00);
    Kuzemsky a1207-conf [quantum protectorate and emergence];
    Rougerie a1607-Hab;
    Aharonov et al PNAS(18)-a1709 [top-down structure].
  @ Ground state: Lenard JMP(64) [1D impenetrable bosons];
    Date et al PRL(98);
    Van Neck et al PRA(01) [energy bound];
    Ostili & Presilla NJP(04)cm [analytic];
    Cordero et al JPA(13)-a1305
      [3-level atoms interacting with a 1-mode electromagnetic field, semiclassical vs quantum description];
    Eckle 19.
  @ Non-equilibrium theory: Gasenzer et al EPJC(10)-a1003 [far from equilibrium];
    Stefanucci & van Leeuwen 13 [r CP(13)];
    Eisert et al nPhys(15)-a1408;
    Chakraborty et al PRB(19)-a1810 [starting from arbitrary initial conditions];
    Heyl EPL(19)-a1811 [phase transitions, survey].
  @ Effects, phenomenology: Sewell 86 [collective phenomena];
    news pw(13)nov [transition from few-body to many-body system and Fermi sea in ultracold fermionic atoms];
    Continentino 17 [scaling and phase transitions];
    Banks & Lucas PRE(19)-a1810 [on a lattice, emergent entropy production];
    > s.a. Area Law.
Types of Systems
  > s.a. condensed matter and solid-state
  physics; open systems; tensor networks.
  @ Boson gas: Lieb mp/00-proc [energy/particle],
    et al in(02)mp,
    mp/04-conf;
    Vakarchuk qp/05 [self-consistent];
    > s.a. gas.
  @ Fermions: Jiang a1711 [quantum simulation of strongly correlated fermions].
  @ N particles: Mirlin PRP(00) [disordered, energy levels];
    Dukelsky et al RMP(04) [Richardson-Gaudin models];
    Wen 04 [quantum field theory of many-body systems];
    Dunn et al qp/06,
    PRA(09) [confined, wave function];
    Braun & Garg JMP(07) [coherent state propagator];
    Laing et al JMP(09)-a0808 [group-theoretical and graphical techniques];
    Lipparini 08;
    Pezzotti & Pulvirenti AHP(09)-a0810 [semiclassical, mean-field limit];
    Nolting 09;
    Hämmerling et al JPA(10) [collective versus single-particle motion];
    Horwitz JPA(13)-a1210 [relativistic particles, spin, angular momentum and spin-statistics];
    Di Stefano et al JSM(13)-a1210 [perturbative probabilistic approach];
    Hummel et al JPA(14) [mean density of states];
    Beugeling et al JSM(15)-a1410 [participation ratio and entanglement entropy of eigenstates];
    Walter PhD(14)-a1410 [general relations between multiparticle quantum states];
    Tura et al proc(16)-a1501 [entanglement and non-locality];
    Sunko JNSM(16)-a1609 ["shapes" for strongly correlated fermions];
    Giuliani a1711-ln
      [order, disorder and phase transitions, transport coefficients];
    Sanchez-Palencia Phys(20) [constructing field theories using quantum simulators];
    Ghale & Johnson a2010 [energy];
    > s.a. crystals [electron states];
      open systems; supersymmetry.
  @ In a gravitational field: 
    Anastopoulos PRD(96);
    Toroš et al a1701
      [coupling of internal and external degrees of freedom, decoherence effect].
  > Other systems:
    see Emergent Systems; entangled systems;
    fermions; macroscopic quantum systems;
    Mean-Field Theory; networks;
    nuclear physics.
Approaches, Techniques > s.a. Bethe Ansatz.
  * Approaches: The first
    approximation is the mean-field theory, which is exact only for free
    systems; The next approximation uses 2-body correlations, random phase
    approximation, and the Bethe Ansatz; The main approach is the coupled
    cluster method; Density-functional theory; A simple technique to obtain
    approximate but reliable ground state energies is  envelope theory.
  * Information scrambling: The
    delocalization of information under many-body dynamics; Out-of-time-order
    correlators have been proposed to probe it.
  @ General references:
    Kugler et al a2101 [multipoint
      correlation functions and relationship betwen Feynman diagrams and Hamiltonian based approaches].
  @ Mean-field approximation:
    Balian & Vénéroni AP(92) [correlations and fluctuations];
    Scarfone RPMP(05) [and complex non-linearity].
  @ Effective evolution equations:
    Schlein a0807-ln;
    Rodnianski & Schlein CMP(09) [rate of convergence to Hartree-equation mean-field dynamics];
    Schlein a0910-proc,
    a1012-proc
      [derivation of the Hartree equation and Gross-Pitaevskii equation];
    Ben Arous et al a1111 [fluctuations and central limit theorem];
    Requist a1401
      [reduced many-body dynamics, induced gauge structures];
    Benedikter et al a1502-ln [rev];
    Engl et al PTRS(16)-a1511 [semiclassical approach to many-body quantum propagation];
    Foti et al PRA(16)-a1609
      [many spin-1/2 particles as environment for a quantum mechanical oscillator].
  @ Quantum information: Eisert & Plenio ed-NJP(10);
    Augusiak et al LNP(12)-a1003;
    Nahum et al PRX(18) [spreading, hydrodynamic description];
    Hummel et al a1812
      [reversible spreading near criticality];
    Couch et al a1908 [chaotic systems, speed of information spreading].
  @ Information scrambling: Sekino & Susskind JHEP(08)-a0808,
    Susskind a1101 [fast scramblers];
    Swingle PRA(16)-a1602 [and out-of-time-order correlation functions];
    Schnaack et al a1808 [lattice models, time evolution of tripartite information];
    Zhuang et al a1902 [chaos and complexity];
    Zanardi & Anand a2012.
  @ Numerical simulations: Ostilli & Presilla JPA(04)cm [Monte Carlo dynamics];
    Gardas et al PRB(18)-a1805 [hybrid classical-quantum algorithm];
    Zhu et al a1905 [GDTWA, new numerical approach];
    Hangleiter et al a1906
      [Monte Carlo approach, easing the sign problem];
    Weimer et al a1907.
  @ Related topics: Prosen JPA(98) [invariants of motion],
    PRL(98) [integrability to ergodicity];
    Fedorova & Zeitlin SPIE(05)qp,
    SPIE(05)qp [pattern formation];
    Gori-Giorgi et al PRL(09) [density-functional theory for strongly-interacting electrons];
    Carmeli et al PRA(15)-a1411 [local distinguishability];
    Nam & Napiórkowski a1611-in [norm approximation and Bogoliubov theory];
    Semay & Cimino a1908 [tests of envelope theory];
    García & Vernon a1911 [emergence of patterns];
    Semay et al a2004 [envelope theory, different particles];
    Rrapaj & Roggero a2005 [RBM neural networks];
    LeBlond et al a2012 [universality in the onset of chaos].
  > Reated topics: see distances;
    green functions; matter; quantum
    chaos; quantum field theory in curved spacetime; quantum
    groups [hidden symmetries of quantum impurities]; stochastic processes;
    topology in physics; wigner functions.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 5 jan 2021