|  Conformal Invariance in Physics | 
In General > s.a. conformal structures [including
  conformal Killing fields]; Scale Invariance.
  * History: 1908, Bateman and
    Cunningham discovered the form invariance of Maxwell's equations for electromagnetism
    with respect to conformal spacetime transformations; The reasons for conformal
    invariance were originally pointed out by H Weyl.
  * Conformal invariance and Weyl invariance:
    Conformal and Weyl invariance are sometimes taken to be synonymous, although it may be best
    to distinguish conformal invariance of a theory in flat spacetime from the Weyl invariance
    of a theory coupled to gravity, in curved spacetime.
  * Conditions: In the absence of
    dimensional parameters, conformal invariance requires the vanishing of
    Taa.
  * Special types: Restricted Weyl
    invariance refers to transformations with conformal factor satisfying 
    ∇2Ω = 0.
  * And quantization: The conformal invariance
    of a classical theory can be broken by quantization, as in the case of QCD with massless quarks.
  @ General references: Flato et al AP(78) [covariance of field equations];
    Boyanovsky & Naon RNC(90)
      [in quantum field theory / statistical mechanics];
    Zuber Rech(93)feb;
    Nikolov & Todorov IJMPA(04) [and rationality of correlation functions];
    Jackiw AIP(05)gq [examples in 3D];
    Kastrup AdP(08)-a0808-in [historical developments];
    Jackiw & Pi JPA(11) [in diverse dimensions];
    Quirós et al GRG(13)-a1108 [formulation of principle of conformal equivalence, and applications];
    László a1406-conf [without reference to a metric];
    Mannheim a1506 [as an alternative to supersymmetry];
    Todorov BJP-a1905 [hist].
  @ Weyl vs conformal invariance: 
    Karananas & Monin PLB(16)-a1510;
    Farnsworth et al JHEP(17)-a1702 [in quantum field theory];
    Alvarez et al EPJC(19)-a1903 [spin-2].
  @ Restricted Weyl invariance: Edery & Nakayama PRD(14)-a1406;
    Edery & Nakayama MPLA(15)-a1502 [and Einstein gravity with cosmological constant and Higgs mass];
    Oda a2005.
  @ Spontaneous breaking: Smolin PLB(80) [and general relativity as low-energy limit];
    Nieh PLA(82),
    Venturi gq/06-MG11
      [and generation of gravitational constant G];
    Edery et al CQG(06)ht [Weyl theory + matter];
    Kaplan et al PRD(09)-a0905 [as phase transition];
    Schwimmer & Theisen NPB(11) [and trace anomaly];
    't Hooft FP(11) [and elementary particle models without free parameters];
    Hinterbichler & Khoury JCAP(12) [scale invariance, and cosmology];
    Guendelman et al GRG(15)-a1408 [and cosmology];
    't Hooft a1410-GRF [small-distance structure of gravity];
    de Cesare et al EPJC(17)-a1612 [emergence of physical scales];
    Ghilencea & Lee PRD(19)-a1809 [in model building beyond the Standard Model and inflation];
    > s.a. conformal gravity; particle physics.
  @ Generalizations: Pérez-Nadal EPJC(17)-a1609 [anisotropic conformal invariance];
    > s.a. hořava gravity.
  > Online resources:
    see Wikipedia page.
Conformal Invariance in Gravity \ s.a. gravity
  and gravitational theories [including scale invariant].
  @ General references: Deser AP(70);
    Bicknell JPA(76);
    Suggett JPA(79),
    JPA(79);
    Dąbrowski et al AdP(09)-a0806 [rev];
    't Hooft a0909-conf [conformal transformations in quantum gravity];
    Moon et al MPLA(10)-a0912 [in Einstein-Cartan-Weyl space];
    Nobili a1201,
    a1201 [Conformal General Relativity];
    Clark & Love MPLA(12)-a1205 [local Weyl scaling and dilatation invariance];
    Quiros a1401 [physical consequences];
    Rahmanpour & Shojaie GRG(16)-a1608 [metric measure spaces];
    Nikolić a1702-conf
      [conformal non-invariance of Einstein-Hilbert action];
    Hobson & Lasenby a2008 [gauging].
  @ And matter: del Campo et al JCAP(10)-a1006 [with dilaton, and spontaneous breaking of symmetry];
    't Hooft a1011
      [conformal constraint and the coupling to matter];
    Padilla et al PRD(14) [scalar fields coupled to gravity];
    Lucat & Prokopec CQG(16)-a1606 [and the standard model];
    Shaposhnikov & Shkerin PLB(18)-a1803 [conformal symmetry breaking].
  @ And cosmology: Kelleher CQG(04)gq/03,
    CQG(04) [and the cosmological constant];
    Cadoni PLB(06) [as broken by matter coupling, and the cosmological constant];
    Mottola a1103-proc [and dark energy];
    Nguyen a1111;
    Bars et al PRD(14)-a1307
      [lifting a non-scale-invariant theory to a Weyl-invariant one, and cosmology];
    Barvinsky JCAP(14)-a1311 [ghost-free conformal extension of Einstein's theory, and dark metter];
    Álvarez et al JCAP(15)-a1501;
    Libanov et al JETPL(15)-a1508 [scalar perturbations];
    Alexeyev & Krichevskiy PPNL-a2012 [inflationary solutions].
  @ Related topics: Wei & Cai JCAP(07)ap/06 [and the Cheng-Weyl vector field];
    Attard & Lazzarini NPB(16)-a1607 [and the Wess-Zumino functional].
  > Various theories: see conformal gravity
    [including spatial conformal invariance and quantum thory]; Shape Dynamics [evolving conformal
    geometry]; teleparallel gravity; Weyl Invariance;
    unified theories.
In Other Theories > s.a. Conformal Field Theory;
  higher-spin theories; quintessence;
  spin-2 fields; Stealth Fields.
  @ Electromagnetism:
    Rosen AJP(72)jul [conformal invariance of Maxwell's equations];
    Wulfman a1003/JPA [consequences];
    > s.a. electromagnetism in curved spacetime.
  @ Standard model:
    Meissner & Nicolai PLB(07);
    Fabbri GRG(12)-a1107;
    > s.a. electroweak theory.
  @ Other theories:
    Smirnov in(06)-a0708 [2D lattice models],
    a0708 [Ising model];
    Shaukat & Waldron NPB(10) [explicit coupling of theories to scale];
    Andrzejewski & Gonera a1108 [mechanics];
    Faci a1110 [constructing conformally invariant equations];
    Hofman & Strominger PRL(11) [2D quantum field theory];
    Casalbuoni & Gomis PRD(14)-a1404 [relativistic point particles];
    Okazaki PRD(17)-a1704 [quantum mechanics];
    Hammad et al a2012 [Klein-Gordon equation in curved spacetime].
  > Related topics:
    see anomalies; Biconformal Space;
    mass [origin]; renormalization group.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 26 dec 2020