|  Spin-Statistics Theorem | 
In General > s.a. Dyons; Mapping
  Class Group; particle statistics; soliton.
  * Idea: The statement that
    integer-spin particles are bosons (obey Bose-Einstein statistics), while
    half-integer ones fermions (obey Fermi-Dirac statistics); In Weinberg's proof,
    one sees that causality, Poincaré invariance, positive energies and
    positive probability imply the spin-statistics relation.
  @ Reviews: York qp/99,
    qp/99 [N particles].
  @ General references:
    Fierz HPA(39)-a1704;
    Pauli PR(40);
    Lüders & Zumino PR(58);
    Arnowitt & Deser JMP(62);
    Streater & Wightman 64;
    Finkelstein & Rubinstein JMP(68);
    Tscheuschner IJTP(89);
    Balachandran et al MPLA(90),
    IJMPA(93);
    Forte & Jolicoeur NPB(91) [2+1 dimensions];
    Duck & Sudarshan AJP(98)apr,
    98;
    Hilborn & Tino ed-01;
    Deck & Walker PS(01);
    Dobrov JPA(03);
    Reyes-Lega & Papadopoulos FP(10)-a0910 [Berry-Robbins approach];
    Marchetti FP(10) [spin-statistics transmutation];
    Papadopoulos & Reyes-Lega FP(10) [Berry-Robbins approach, geometric];
    Suoranta a1008-wd [generalized];
    Lian a1208 [SU(2) × C × T as intrinsic reason];
    Curceanu et al AJP(12)jul [RL];
    Bennett FP(15)-a1504 [in relativistic quantum mechanics];
    Unnikrishnan a1906 [the physics].
  @ Proofs: Kuckert LMP(95)ht/94 [algebraic];
    Soloviev TMP(99)ht/06 [including non-local fields];
    Massimi & Redhead SHPMP(03) [Weinberg's proof];
    Doplicher FP(10)-a0907-conf [from local observable quantities and first principles];
    Reyes-Lega & Benavides FP(10)-a0911 [configuration-space approach];
    Santamato & De Martini a1604 [based on symmetry group considerations].
  @ And geometric phase:
    Berry & Robbins PRS(97);
    Bandyopadhyay PRS(10).
  @ And locality: Greenberg PLB(98)ht/97;
    O'Hara qp/01.
  @ In non-relativistic theory: Peshkin PRA(03)qp/02;
    Allen & Mondragon qp/03 [absence, ?];
    Shaji & Sudarshan qp/03,
    comments Puccini & Vucetich qp/04,
    S&S qp/04,
    P&V qp/05;
    Kuckert PLA(04)qp/02 [2D and 3D],
    & Mund AdP(05)qp/04;
    Hagen PRA(04) [no connection in Galilean field theory];
    Peshkin qp/04,
    FP(06);
    Jabs FP(10)-a0810.
  @ Related topics:
    Guido & Longo CMP(95) [algebraic];
    Fujikawa IJMPA(01)ht [path-integral form];
    Anastopoulos IJMPA(04)qp/01 [geometric quantization];
    Harrison  & Robbins JMP(04)mp/03 [group representations];
    O'Hara FP(03)qp [and rotations];
    da Cruz ht/04
      [spin, Hausdorff dimension and writhing number of quantum paths];
    Unnikrishnan gq/04 [and gravity];
    Gilra a0909,
    Good IJMPA(13)-a1205 [from the dynamics?];
    Santamato & De Martini a1408
      [and intrinsic helicity, in Conformal Quantum Geometrodynamics].
  > Online resources:
    see John Baez's page;
    Wikipedia page.
(Pauli) Exclusion Principle in Quantum Theory
  > s.a. crystals [Pauli crystals].
  * Idea, in quantum mechanics: Two
    fermions cannot occupy the same state, because if they did, the wave function
    would be both symmetric and antisymmetric under exchange of the two particles.
  * Idea, in quantum field theory:
    It is encoded in the commutation relations of creation and annihilation operators;
    The only possible modifications to the boson/fermion commutation relations are the
    ones leading to parastatistics.
  * Consequences: It explains the
    properties of atoms, their classification in the periodic table, and features
    of complex molecules, and is responsible for the stability of matter.
  * Violation? There are no compelling
    reasons to doubt its validity; 2006, The tightest limits come from the absence of
    electron transitions to states already occupied by two other electrons, as would
    be seen in soft X-ray (Cu) fluorescence; 2015, The VIP (Violation of the Pauli
    exclusion principle) experiment established a limit on the probability that the
    exclusion principle is violated by electrons (searching for forbidden atomic
    transitions in copper), and was recently upgraded.
  @ General references: Pauli ZP(25);
    Gamow SA(59)jul;
    Govorkov PLA(89);
    Broyles qp/99;
    Massimi BJPS(01)
      [and Leibniz's Identity of Indiscernibles];
    Straumann qp/04-conf,
    Fleming SHPMP(07) [history];
    Altunbulak & Klyachko CMP(08)-a0802,
    Klyachko a0904/PRL [and electron density matrix];
    García-Calderón & Mendoza-Luna PRA(11)-a1104 [effect on decays];
    Kaplan FP(13),
    a1902 [rev].
  @ Violation?
    Greenberg & Mohapatra PRL(89) [later retracted];
    Dolgov & Smirnov PLB(05)hp [for neutrinos, and astrophysics];
    Ignatiev & Kuzmin PLA(06) [for neutrinos, and non-standard commutation relations];
    Jackson PRD(08)-a0809 [in superstring theory];
    Addazi & Bernabei a1901 [non-commutative gravity, tests].
  @ Experiment: Sudbery Nat(90)nov,
    Kekez et al  Nat(90)nov [upper limit to violation];
    Ramberg & Snow PLB(90);
    Novikov et al PLB(90);
    VIP collaboration PLB(06)qp [electrons];
    Barabash FP(10) [rev];
    Bartalucci et al FP(10),
    Curceanu et al FP(11) [VIP results];
    Bernabei et al FP(10) [nuclear processes, in NaI(Tl) scintillators];
    Piscicchia et al APPB(15)-a1501 [VIP results];
    Marton et al JPCS(15)-a1503 [high-sensitivity tests];
    Addazi et al ChPC(18)-a1712 [proposed underground experiments, and tests of non-commutative spacetime];
    Shi et al EPJC(18)-a1804 [search for violation];
    Marton et al JPCS(19)-a1903 [high sensitivity].
  @ Generalized Pauli constraints: Eisert Phy(13),
    viewpoint on Schilling et al PRL(13);
    Schilling PhD(14)-a1507.
Spin-Statistics Theorem in Other Theories
  @ Non-commutative: Alavi PS(04)ht/02;
    Chaichian et al PLB(03) [and CPT];
    Alavi PS(04);
    Srivastava PhD-a1309 [in the Groenewold-Moyal plane].
  @ In curved spacetime: Parker & Wang PRD(89);
    Guido et al RVMP(01)mp/99;
    Verch CMP(01)mp [generally covariant];
    Fewster a1503-proc,
    IJMPD(16)-a1603-MG14 [in locally covariant quantum field theory].
  @ In quantum gravity, geons: Sorkin CMP(88);
    Dowker & Sorkin CQG(98)gq/96,
    gq/01-proc;
    Balachandran et al NPB(00)ht/99.
  @ Anyons in 3D:
    Forte IJMPA(92) [path-integral approach];
    Mund CMP(09)-a0801 [and plektons];
    > s.a. particle statistics.
  @ Related topics: Anandan PLA(98)ht [and Kaluza-Klein theory];
    Finkelstein LMP(00) [q-Lorentz group];
    Morgan AJP(04)nov,
    JPA(06)
      [in classical mechanics and conformal field theory];
    Boya & Sudarshan IJTP(07)-a0711 [in arbitrary dimensions];
    Jackson & Hogan IJMPD(08) [and the cosmological constant];
    Johnson-Freyd AGT(17)-a1507 [functorial setting, topological version];
    > s.a. types of quantum field theories [higher-spin].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 2 apr 2020