|  Generalized Particle Statistics | 
In General
  > s.a. cosmological constant; fock space;
  information; particle statistics.
  * Idea: Statistics is usually
    dictated by representations of the permutation group; However, examples of
    non-permutation group statistics are known from anyons in 2D and from
    \(\mathbb Z\)n, cyclic statistics
    for a certain non-gravitational system.
  @ General references: Fivel PRL(90);
    Chen et al MPLA(96);
    Medvedev PRL(97) [ambiguous statistics];
    Greenberg qp/99;
    Polychronakos ht/99-ln [1D];
    Greenberg in(00)ht [rev];
    Marcinek m.QA/01 [Fock space];
    Marcinek in(03)m.QA/04 [categorical approach];
    Greenberg in(09)-a0804 [rev];
    Swain IJMPD(08)-a0805 [quantum-gravity effects];
    Arzano & Benedetti IJMPA(09)-a0809
      [momentum-dependent "rainbow statistics" in non-commutative field theory];
    Cattani & Bassalo a0903;
    Lavagno & Narayana Swami PhyA(10) [and deformed algebras];
    Dahlsten et al a1307 [in generalized quantum theory];
    Goyal a1309 [no generalized statistics];
    Neori a1603-PhD [anyons and the symmetrization postulate];
    Wang et al AP(19)-a1901 [and spacetime topology].
  @ Examples:
    Greenberg PRL(90) [infinite statistics];
    Balachandran et al MPLA(01)ht/00 [geons in 2+1 Chern-Simons theory];
    Surya JMP(04)ht/03 [cyclic statistics];
    Baez et al ATMP(07)gq/06 [loop defects in BF theory];
    Salvitti CMP(07) [2D massive Dirac fields];
    Niven & Grendar PLA(09);
    Maslov TMP(09) [generalied Bose-Einstein distribution];
    Bagarello RPMP(11)-a1106,
    JMP(13)-a1309 [pseudo-bosons];
    Matthews et al SRep(13)-a1106 [simulations with entangled photons];
    Lundholm & Solovej AHP(14)-a1301 [intermediate and fractional statistics, Lieb-Thirring inequalities];
    Palev a1412-proc [A-, B-, C- and D- (super)statistics];
    Hoyuelos JSM(18)-a1802 [general statistics, ewkons];
    Ramakrishna a2005 [interpolating algebra]; > s.a. non-commutative geometry.
  @ Fermions: Niemi & Semenoff PLB(84),
    PRP(86) [fractional fermion number];
    Arik & Tekin JPA(02);
    Narayana Swami qp/05,
    Conroy et al PLA(10) [q-deformed];
    Treumann a1305 [fermionic fractional statistics].
  @ Phenomenology: Marinho & Brito a1907
      [q-deformed statistics and thermoelectric properties of solids].
Fractional Statistics in 2+1 Dimensions
  > s.a. Anyons [including 3D]; chern-simons field theories;
  photons; supersymmetric theories.
  * Idea: Objects with intermediate
    statistics, arising in some 2D systems, because particle world-lines may braid;
    Wave functions may change by any real phase under particle exchange; They
    belong to a 1D representation of the braid group.
  * Features: Fractional
    statistics can be exchanged for extra charges/fluxes in 2D; They imply
    P and T violation; They do not violate the spin-statistics
    theorem, because in 2D spin is not quantized.
  * Quons: Elementary excitations
    of fields with intermediate statistics, particles characterized by a parameter
    q which permits smooth interpolation between Bose and Fermi statistics;
    q = 1 gives bosons, q = −1 gives fermions.
  * Simplest type: Semion (the phase
    changes by π/2; ground state probably superfluid – superconducting if charged).
  * History: Proposed by F Wilczek in 1982;
    Applications in the fractal quantum Hall effect, high-\(T_{\rm c}\) superconductivity,
    and edge conduction modes of 2D insulators.
  @ I: Khurana PT(89)nov;
    Canright & Girvin Sci(90)mar;
    Wilczek PW(91)jan, SA(91)may.
  @ General references: Leinaas & Myrheim NCB(77);
    Sorkin PRD(83);
    Wu PRL(84);
    Wu PRL(84) [many-body wave functions];
    Haldane & Wu PRL(85) [for vortices in 2D superfluids];
    Goldin in(87);
    Mackenzie & Wilczek IJMPA(88);
    Semenoff PRL(88);
    Lavenda & Dunning-Davies JMP(89);
    Wetterich NPB(89);
    Imbo et al PLB(90);
    Aneziris et al IJMPA(91) [1D];
    Haldane PRL(91);
    Hessling & Tscheuschner IJTP(91);
    Forte RMP(92);
    Gamboa IJMPA(92);
    Canright & Johnson JPA(94);
    Goldin & Sharp PRL(96);
    Tang & Finkelstein ht/96/PRD;
    Delves et al PRS(97);
    Hagen PLB(99)ht [Pauli term];
    Khare 05 [text];
    Negro et al JMP(06)mp/05 [formalism];
    Lima & Landim EPL(06)ht [fractional spin];
    Wilczek in(09)-a0812 [rev];
    Fitzpatrick et al a1205;
    Vleeshouwers & Gritsev a2012 [topological field theory approach].
  @ Quons:
    Goodison & Toms PLA(94) [canonical partition function];
    Greenberg & Hilborn FP(99)ht/98;
    Chow & Greenberg PLA(01)ht/00 [in relativistic quantum theory];
    Jackson & Hogan IJMPD(08)-ht/07 [and the cosmological constant].
  @ Models, phenomenology:
    Fendley & Fradkin PRB(05)cm [non-Abelian statistics];
    Bishara et al PRB(09)
    + Moore Phy(09);
    Shtengel Phy(10);
    Bonderson et al PRB(11)
    + Wilczek Phy(11) [Hall effect];
    Klinovaja & Loss PRL(13)-a1301;
    Levin PRX(13) [edge conduction modes in 2D insulators].
  @ Related topics:
    Müller ZPC(90) [2D, lattice];
    Acharya & Narayana Swami JPA(94) [statistical mechanics],
    JPA(04) [and detailed balance];
    Isakov et al PLA(96) [thermodynamics];
    Ramanathan PS(99) [Laughlin liquids];
    Pachos AP(07) [lattice];
    Sree Ranjani et al AP(09)-a0812 [in 1D three-particle Calogero model];
    Freedman & Levaillant a1501 [measuring topological charge];
    > s.a. carbon [graphene];
      quantum computation [topological];
      quantum oscillators.
Parastatistics, Paraparticles > s.a. Bosons [bosonization];
  path integrals.
  * Idea: They can arise only
    if 3 or more particles are present (but in generally covariant theories, new
    possibilities arise even with only two particles); They correspond to higher
    than 1D representations of the permutation group.
  * Para-Fermi: At most
    p particles (p ∈ \(\mathbb N\)) may occupy a
    quantum state, antisymmetric; The ordinary case is p = 1.
  * Para-Bose: Similar
    to para-Fermi, but different symmetry under interchange.
  @ General references:
    Green PR(53) [proposal];
    Ohnuki & Kamefuchi 82 [and quantum field theory];
    Meljanac et al MPLA(98) [as triple operator algebras];
    Stoilova & Van der Jeugt JMP(05),
    JMP(05)mp [and Lie (super)algebras];
    Maslov TMP(07);
    Nelson a1912;
    Stoilova & Van der Jeugt PLA(20)-a2005 [statistical mechanics, thermodynamics].
  @ Examples: Greenberg PRL(64) [quarks];
    Ringwood & Woodward PRL(84) [monopoles];
    Cobanera & Ortíz PRA(14)-a1307 [Fock parafermions].
  @ Parafermions: Campoamor-Stursberg & Rausch de Traubenberg
      AIP(10)-a0910 [and ternary superspaces];
    Dovgard & Gepner PLB(10) [non-abelian].
  @ Related topics: Aneziris et al IJMPA(89),
    MPLA(89) [and general covariance];
    Govorkov TMP(94) [non-existence];
    Tamura & Ito JMP(07) [and random point fields];
    Tichy & Mølmer PRA(17)-a1702 [immanons].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 22 dec 2020