|  Ising Models | 
In General > s.a. spin models; 2D
  gravity; lattice field theory [random].
  * Idea: A crude model for
    ferromagnetic domains, based on a lattice of N fixed atoms of
    spin-1/2, with constant-coefficient Hamiltonian
H = −∑<ij> Jij si sj − μ ∑i=1N si B ,
    where si = ± 1,
    B is the z-component of the magnetic field and the interaction
    energy is usually of the isotropic form Jij
    = J (J > 0 for ferromagnetism, J < 0 for
    antiferromagnetism); Without self-interactions, J = 0, the model is
    trivially solvable and does not depend on dimensions or type of lattice.
  * History: The model was
    invented by the German physicist Wilhelm Lenz and investigated by his
    student Ernst Ising in the 1920s; Ising analyzed a 1D version of the
    model, and found no phase transition in the magnetization; A decade
    later other physicists found hints of magnetization in 2D, and in 1944
    Lars Onsager confirmed the existsnce of a phase transition with an exact
    solution of the 2D Ising model;  For three dimensions no exact solution
    has ever been found, but computer simulations give unmistakable evidence
    of an abrupt phase transition.
  * Motivation: The 2D model
    is the only non-trivial exactly solvable model of phase transition.
  * Lee-Yang theorem:
    For any graph, the zeros of the partition function of the ferromagnetic
    Ising model lie on the unit circle in C; In fact, the
    union of the zeros of all graphs is dense on the unit circle.
  @ References: Ising ZP(25);
    Imbrie PRL(84) [critical dimension];
    Hayes AS(00)sep [I];
    McCoy a1111-conf [rev];
    Mosseri PRE(15)-a1409 [arbitrary graphs, energy spectrum from Hadamard transform];
    Collevecchio et al a1409 [Prokofiev-Svistunov (worm) algorithm];
    Ising et al a1706 [history];
    Peters & Regts JLMS(19)-a1810 [arbitrary graphs, zeros of the partition function].
Cases and Techniques
  > s.a. 2D ising models.
  * In general: One can apply
    the mean-field approximation, which totally fails in 1D and gets better
    in higher dimensions, and the Bethe-Peierls approximation, which can be
    regarded as the lowest level of a Cluster Variation Method.
  * 1D: The model is simple
    to solve and there is no spontaneous magnetization at any T, no
    B = 0 phase transition; See, however, the transverse-field case.
  @ 1D:
    Pfeuty AP(70) [transverse field];
    Reyes & Tsvelik NPB(06),
    PRB(06)cm [correlation functions];
    Mbeng et al a2009 [quantum Ising chain, intro].
  @ 1D, variations: Cassandro et al CMP(09) [with long-range interaction, random field];
    Yuan et al PhyA(09) [with next-nearest-neighbor interactions].
  @ 3D: Imbrie CMP(85) [random field, ground state];
    Nigmatullin & Toboev TMP(89) [and 2D, thermodynamics];
    Dotsenko et al PRL(93) [cluster boundaries];
    Regge & Zecchina JPA(00)cm/99 [different lattices];
    Ron et al PhyA(05) [fixed point];
    Kozlovskii et al NPB(06) [free energy and equation of state];
    Chung PLA(06) [magnetization and specific heat];
    Canfora PLB(07)cm [Kallen-Lehman approach];
    Caselle et al JHEP(07) [Monte Carlo, free energy of interfaces];
    Canpolat et al PS(07) [effective-field approximation];
    Nigro JSM(08)-a0710;
    Belletti et al JSP(09);
    Bittner et al NPB(09) [anisotropy of the interface tension];
    Litim & Zappalà PRD(11) [exponents, functional renormalization group approach];
    Perk ChPB(13)-a1307;
    Aizenman et al CMP(15)-a1311;
    Gliozzi & Rago JHEP(14)-a1403 [critical exponents];
    Cosme et al JHEP(15)-a1503 [conformal symmetry];
    Talalaev a1805 [integrable structure];
    Rychkov a2007 [conformal bootstrap approach];
    > s.a. Scale Invariance.
  @ 3D, random lattice:
    Ivaneyko et al PhyA(06);
    Lima et al PhyA(08).
  @ 3D, with long-range-correlated disorder:
    Weinrib & Halperin PRB(83).
  @ 3D, other variations: van Enter JSP(05) [random boundary conditions];
    Kondratiev & Zhizhina JSP(07) [with birth and death dynamics];
    Basuev TMP(07) [in half-space].
  @ Higher dimensions:
    Yokota PhyA(06) [replica symmetry breaking];
    Sakai CMP(07) [lace expansion];
    Klein & March PLA(08) [critical exponents];
    Coupier AAP(08)-m/06 [conditions for Poisson approximations];
    Temesvári NPB(10)-a0911 [free energy, perturbative];
    Bonzom et al PLB(12)-a1108 [random lattice, no phase transition in the continuum limit];
    Chatterjee CMP(15)-a1404 [no replica symmetry breaking in the random field Ising model];
    Ott & Velenik a2007 [correlations].
  @ Antiferromagnetic: Azcoiti et al NPB(14) [Monte Carlo algorithm].
  @ Other types: Bahmad et al PhyA(07) [mixed spin-1/2 and spin-1];
    Serva PhyA(11) [dilute model];
    Affonso et al a2105 [long-range systems].
  @ Spin-3/2:
    Canko & Keskin PLA(03) [ground state];
    Keskin & Canko PLA(05) [relaxation phenomena near second-order phase transition];
    Canko & Keskin PhyA(06).
  @ Simulations: 
    Aktekin PhyA(96) [4D];
    Cervera-Lierta Quant(18)-a1807 [1D, on a quantum computer];
    Crosson & Slezak a2002 [path integral Monte Carlo].
  > Techniques: see ClusterExpansion;
    Master Equation; Mean-Field Method;
    path integrals; renormalization group;
    stochastic quantization.
References
  > s.a. graph theory in physics; networks
  / Potts Model; regge calculus.
  @ Phase transitions:
    Prüßner et al PhyA(00) [2D and 3D, critical exponents];
    Liu & Gitterman AJP(03)aug [2D and 3D, critical T];
    Zurek et al PRL(05)cm [dynamics];
    Romá et al PhyA(06) [new order parameter];
    Shimizu & Kawaguchi PLA(06) [and entanglement];
    Aguirre-Contreras et al PLA(06) [critical T, diluted model];
    Pérez Gaviro et al JPA(06);
    Dziarmaga PRB(06)cm [random lattice];
    Pishtchev PLA(07) [critical exponents];
    Machta et al JSP(08) [percolation signature];
    Björnberg & Grimmett JSP(09)-a0901 [sharpness, hypercubic lattice];
    Barré et al PhyA(09) [finite-size effects, random graphs];
    Bissacot & Cioletti JSP(10)-a1001 [with non-uniform external fields];
    Gessner et al EPL(14)-a1403 [monitoring the time evolution of a single spin];
    Bonati EJP(14) [the Peierls argument in higher dimensions];
    Duminil-Copin a1607-proc [random currents expansion];
    > s.a. quantum phase transitions.
  @ With magnetic field: Delfino JPA(04) [rev];
    March PLA(14) [field of arbitrary strength];
    Cioletti & Vila JSP(16)-a1506 [general lattices, graphical representation].
  @ Entanglement:
    Novotný et al JPA(05) [one- and two-particle states];
    Grimmett et al JSP(08)-a0704 [asymptotic scaling];
    Furman et al PRA(08)-a0805 [1D];
    Chang & Wu PRA(10)-a1001 [dynamics, and phase transition];
    Foss-Feig et al NJP(13)-a1306 [dynamics of spin-spin correlation functions].
  @ Continuum limit: Manrique et al CQG(06)ht/05 [Ising field theory, loop quantization techniques].
  @ Other formulations: Rosengren JPA(86),
    da Costa & Maciel RBEF(03)mp [combinatorial];
    Diego ht/05 [integral representation].
  @ Other variations and generalizations: Meyer pr(92) [spacetime Ising models];
    O'Connor et al JPA(07) [Ising-like models, equation of state];
    Bazhanov et al PLA(08)-a0706 [Faddeev-Volkov model];
    Hernández et al JMP(13)-a1301,
    Hernández a1402
      [coupled to 2D causal dynamical triangulations].
  @ Related topics: Issigoni & Paraskevaidis PhyA(05) [roughening T];
    Suzuki JSM(09)-a0807 [dynamics of temperature quenching];
    Gu et al PhyD(09)-a0809 [emergent properties];
    Streib et al JSP(14) [partition function, binomial approximation method];
    Lubetzky & Sly a1401 [Glauber dynamics and information percolation];
    Zintchenko et al PRB(15)-a1408 [ground states];
    Bravyi & Hastings CMP-a1410 [complexity];
    Navez et al PRB(17)-a1603 [propagation of quantum fluctuations];
    Tee a2105 [emergent spacetime as the  ground state];
    > s.a. conformal invariance; Dimers;
      thermalization.
  > Online resources:
    see Wikipedia page.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 24 may 2021