|  Statistical Mechanical Equilibrium | 
In General
  > s.a. ergodic theory; fluctuations; states;
  thermodynamics; wigner functions.
  * Foundational problem:
    Physically, what we know or don't know about a system can't affect its
    evolution, but in a statistical mechanics interpretation of thermodynamics
    the information is crucial in explaining the evolution towards equilibrium.
  * Calculations:
    All quantities of interest can be obtained from the distribution
    function; The easiest one to use is the canonical one.
  @ Notions of equilibrium: Lavis SHPMP(05);
    Pitowsky SHPMP(06);
    Lavis PhSc(08)dec
      [degrees of equilibrium, incorporating the Boltzmann and Gibbs approaches];
    Werndl & Frigg SHPMP(15)-a1510,
    a1510 [new definition of equilibrium, and results];
    Werndl & Frigg a1606-in
      [general criteria for the existence of an equilibrium state],
    a1607-proc [with stochastic microdynamics];
    Lazarovici a1809 [comment on Werndl & Frigg];
    Limaa et al PRD-a1911 [in general relativity].
  @ Notions of equilibrium, quantum systems: Bogdanov et al qp/06-conf [as an effect of quantum entanglement];
    del Rio et al PRE(16)-a1401 [thermalization relative to a particular reference].
Approach to Equilibrium / Thermalization
  > s.a. history of physics.
  * Approach to thermal equilibrium:
    The circumstances under which a system reaches thermal equilibrium, and how
    to derive this from basic dynamical laws, has been a major question from
    the very beginning of thermodynamics and statistical mechanics; Some results
    are known, such as the correlation between relaxation to equilibrium and chaos
    (Krylov showed that a sufficient condition is that the system be mixing), but
    it remains an open problem.
  * Approaches: Statistical
    mechanics attempts to situate equilibrium at the macroscopic level in the
    Boltzmann approach and at the statistical level in the Gibbs approach; The
    issue has not really been settled.
  * Remark: The distribution
    function in some phenomena, such as very unstable systems like K-flows,
    appears to be fundamental, and not just a way of encoding our ignorance.
  @ History:  
    Goldstein LNP-cm/01 [Boltzmann's analysis];
    Leeds PhSc(03)jan [Albert's vs Boltzmann's approach].
  @ Approach to equilibrium: Lebowitz RMP(99)mp/00;
    Flores-Hidalgo et al PRA(09)-a0903 [renormalized-coordinate approach];
    Reimann & Evstigneev PRE(13)-a1311 [under experimentally realistic conditions];
    Malabarba et al PRE(16)-a1604,
    Dong et al a1706 [classical vs quantum equilibration];
    Ho & De Roeck a2011 [prethermalization, theory];
    > s.a. arrow of time;
      diffusion; H-Theorem;
      Langevin Equation; thermodynamics [foundations].
  @ And ergodicity and chaos: Srednicki PRE(94)cm,
    NYAS(95)cm/94,
    cm/94 [chaos];
    Earman & Rédei BJPS(96) [and ergodic theory];
    Gallavotti Chaos(98),
    cm/06 [rev; ensembles, ergodicity and chaoticity];
    Vranas PhSc(98)dec [generalized, "epsilon" ergodicity];
    Zaslavsky PT(99)aug
      [limitations of chaotic dynamics, relaxation to equilibrium and decay of fluctuations];
    Srednicki JPA(99)cm [quantum chaotic system];
    Castiglione et al 08 [and dynamical systems].
  @ Microcanonical equilibrium: Bander cm/96;
    Hari Dass et al IJMPA(03)cm/01.
  @ Related topics: Batterman PhSc(98)jun [Khinchin's program];
    Wang et al AJP(07)may [equilibrium with few particles];
    Akhmedov a2105 [in an expanding spacetime, equilibration];
    > s.a. Maxwell-Boltzmann Distribution;
      Thermodynamic Limit.
Thermalization of a Quantum System > s.a. quantum statistical
  mechanics; states in quantum statistical mechanics.
  * Idea: The first approach was von Neumann's
    "quantum ergodic hypothesis"; 2020, a common approach is based on understanding
    the spreading of entanglement in out-of-equilibrium quantum many-body systems; Other
    approaches are based on the eigenstate thermalization hypothesis and on entropy production;
    One can get mixed states from pure states by coarse-graining, or some self-thermalization.
  @ General references: Albert BJPS(94) [and the collapse of a quantum wave function];
    Hari Dass et al IJMPA(03)cm/01 [self-thermalization];
    Scarani EPJST(07)-a0707 [entanglement and irreversibility];
    Reimann PRL(08), comment 
    Gong & Duan a1109 [realistic quantum system];
    Linden et al PRE(09)-a0812;
    Lychkovskiy PRE(10)-a0903;
    Yuan et al JPSJ(09)-a0904 [decoherence and thermalization];
    Cho & Kim PRL(10)-a0911 [from pure quantum states];
    Yuan et al JPSJ(09)-a0904 [decoherence and thermalization];
    Cho & Kim PRL(10)-a0911 [from pure quantum states];
    Tasaki a1003 [proof and examples];
    Ponomarev et al PRL(11)-a1004;
    Dizadji-Bahmani PhSc(11) [Aharonov approach];
    Riera et al PRL(12)-a1102 [in nature and on a quantum computer];
    Ponomarev et al EPL(12)-a1107 [between two finite systems, from equipartition];
    Cui et al a1110;
    Cramer NJP(12)-a1112 [randomized local Hamiltonians];
    Larson JPB(13)-a1304 [and non-integrability];
    Yang et al PRE(14)-a1311 [canonical vs non-canonical equilibration dynamics];
    Xiong et al SRep(15)-a1311 [and non-Markovian dynamics];
    Khlebnikov & Kruczenski a1312 [isolated system];
    Gogolin & Eisert RPP(16)-a1503 [rev];
    Ithier & Benaych-Georges a1510 [from first principles],
    PRA(17)-a1706 [and random interactions];
    Zhdanov et al PRL(17)-a1706 [not without correlations];
    Grimmer et al a1805;
    Dymarsky a1806 [isolated system];
    Parker et al PRX(19);
    Koukoulekidis et al a1912
      [emergence of the Gibbs state from passive states];
    Jacob et al a2012 [from quantum scattering].
  @ Eigenstate Thermalization Hypothesis:
    Rigol & Srednicki PRL(12) [alternatives];
    De Palma et al PRL(15)-a1506;
    Hosur & Qi PRE(16)-a1507;
    D'Alessio et al AiP(16)-a1509 [and consequences];
    Deutsch RPP(18) [rev];
    Richter et al PRE(19)-a1805 [and the route to equilibrium];
    Foini & Kurchan PRE(19)-a1809 [and out-of-time-order correlators];
    Inozemcev & Volovich a1811 [modified formulation];
    Campos Venuti & Liu a1904 [and quantum ergodicity];
    Wilming et al PRL(19);
    Inozemcev & Volovich a2002 [and thermalization];
    Sugimoto et al a2005 [test].
  @ Entropy production:
    Esposito et al NJP(10);
    Ptaszyński & Esposito PRL(19) [open system].
  @ Time scales: Brandão et al PRE(12)-a1108 [under a random Hamiltonian];
    Short & Farrelly NJP(12)-a1110 [bound];
    Goldstein et al PRL(13)-a1307,
    NJP(15)-a1402;
    García-Pintos et al PRX(17)-a1509;
    Farrelly NJP(16)-a1512.
  @ Macroscopic, many-body systems: Goldstein et al PRE(10)-a0911;
    Reimann NJP(10);
    Torres-Herrera et al PS(15)-a1403 [many-body systems, numerical and analytical studies];
    Tasaki JSP(16)-a1507 [isolated,  and typicality];
    Ostilli & Presilla PRA(17)-a1611 [phenomenological theory];
    Swingle & Yao Phy(17) scrambling of information in spin systems];
    Anza a1808-PhD [and quantum gravity];
    > s.a. Superpositions.
  @ Other types of systems: Belton CMP(10) [quantum random walks];
    Kota et al JSM(11)-a1102 [two-body random ensemble];
    Veniaminov a1112 [interacting particles in a random medium];
    Blanc & Lewin JMP(12)-a1201 [disordered quantum Coulomb  systems];
    Kay a1209
      [system and bath of comparable sizes, and black holes];
    Sedlmayr et al PRL(13)-a1212 [1D fermionic chain];
    Zhuang & Wu PRE(13)-a1308 [chaotic system];
    Campbell et al SRep(16)-a1507 [bosonic atoms in a double-well potential];
    Cherian et al EPL(19)-1604 [two-level quantum system];
    Tang et al PRX(18) [dipolar quantum Newton's cradle];
    Jaschke et al a1805 [1D Ising chain];
    Gluza et al a1809 [non-interacting lattice fermions];
    van Enk a1810 [two identical bosons];
    Wang et al a1905 [small quantum systems].
Examples of Systems
  @ General references: Rothstein AJP(57)nov [irreversibility and information in nuclear spin echo];
    Nauenberg AJP(04)mar [radiation].
  @ Breakdown of thermalization: 
    news pw(06)apr [gas that does not approach equilibrium];
    Rigol PRL(09) [and integrability];
    Wang et al EPJD(13)-a1207 [non-Markovian dynamics in a spin star system].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 11 may 2021