|  2-Dimensional Ising Models | 
In General > s.a. ising models; spin
  models; lattice field theory [random].
  * Motivation: The 2D Ising
    model is the only non-trivial exactly solvable model of phase transition;
    2016, Proof that all classical spin models are equivalent to 2D Ising models,
    with possibly position-dependent couplings and external fields.
  * Summary: Without a magnetic
    field, one gets the Onsager solution (1940s) with a phase transition, while
    with a magnetic field exact results were obtained in the 1980s by
    Zamolodchikov, at the critical temperature.
  @ As universal models:
    De las Cuevas & Cubitt sci(16)mar
    + summary sci(16)mar.
  @ General references:
    Kac & Ward PR(52) [combinatorial];
    Maddox Nat(92)oct [Onsager solution];
    de Oliveira et al JPA(06) [Monte Carlo evolution];
    García-Pelayo JMP(09) [isomorphism with persistent random walk];
    Bostan et al a0904;
    Strack & Jakubczyk PRB(09)-a0906;
    Huber & Law a0907 [canonical paths];
    Parisen Toldin et al JSP(09) [low-T paramagnetic-ferromagnetic transition];
    Mangazeev et al PRE(10)-a1005 [scaling and universality, with magnetic field];
    McCoy & Maillard PTP(12)-a1203 [rev];
    Camia MPRF-a1205 [continuum scaling limit];
    Kager et al JSP(13)-a1208 [signed-loop approach];
    Siudem et al a1410
      [infinite square lattice partition function, low-temperature expansion];
    Chelkak et al AIHP(17)-a1507 [combinatorics];
    Krieger a2009,
    a2009 [partition function].
  @ Susceptibility: Boukraa et al JPA(08)-a0808 [many terms in a series];
    McCoy et al a1003 [rev];
    Chan et al JSP(11)-a1012 [zero-field, many terms];
    Tracy & Widom JMP(13) [diagonal susceptibility].
  @ Correlation functions: Bell PR(66);
    Wang PhyA(09);
    Perk & Au-Yang JSP(09) [pair-correlation functions];
    Iorgov & Lisovyy JSP(11)-a1012;
    Chelkak et al a1202 [n-point spin correlations].
  @ Critical behavior:
    Lubetzky & Sly CMP(12) [mixing time];
    Beffara & Duminil-Copin AP(12)-a1010;
    Li CMP(12) [periodic models];
    Witczak-Krempa PRL(15)-a1501;
    Assis et al JPA(17)-a1705 [analyticity properties];
    Caselle & Sorba PRD(20)-a2003.
  @ Other specific concepts: Beale PRL(96) [exact energy distribution function];
    Schülke & Zheng PLA(97) [global persistence exponent];
    Kitatani et al JPA(03) [specific heat, ± J];
    Mangazeev et al JPA(09) [scaling function, in magnetic field];
    Camia et al a1205 [magnetization exponent];
    Baxter JPA(16)-a1606 [square lattice, boundary free energies];
    Freed & Teleman a1806 [topological dualities].
  @ Numerical techniques:
    Nakamura PRL(08) [Monte Carlo, quasi-1D];
    Preis et al JCP(09) [GPU-accelerated Monte Carlo].
  @ Random field:
    Moss De Oliveira et al PhyA(90) [and 1D];
    > s.a. renormalization.
  >  Related topics:
    see entanglement entropy.
Different Types
  @ Random lattice: Boulatov & Kazakpv PLB(87) [critical exponents];
    Janke et al NPPS(94);
    Lima et al PhyA(00);
    De Sanctis a0811;
    Dommers et al JSP(10)-a1005 [with power-law degree distribution];
    Giardinà et al JSP(15)-a1412 [central-limit theorems];
    Sasakura & Sato PTEP(14)-a1401;
    Chen & Turunen CMP(20)-a1806 [critical temperature],
    a2003 [phase transition].
  @ Other lattices: Repetowicz et al JPA(99),
    Repetowicz JPA(02) [quasiperiodic, Penrose tiling];
    Oitmaa & Keppert JPA(02) [on a 4-6 lattice];
    Bugrij & Lisovyy PLA(03)-a0708 [finite lattice, spin matrix elements],
    TMP(04)-a0708 [anisotropic lattice, correlation functions];
    Wan ht/05 [with non-local links];
    Balint et al a0806 [triangular lattice];
    Björnberg JSP(09) [on star-like graphs];
    Viana et al PLA(09) [anisotropic lattice,  antiferromagnetic, longitudinal field];
    Codello JPA(10) [Archimedean and Laves lattices];
    Mellor & Hibberd a1106 [Union Jack lattice];
    Gandolfo et al JSP(12)-a1207 [Cayley tree, Gibbs states];
    Yoshida & Kubica a1404 [on a fractal (Sierpiński) lattice].
  @ On dynamical triangulation: Benedetti & Loll GRG(07)gq/06;
    Sato & Tanaka PRD(18)-a1710 [criticality at absolute zero].
  @ On causal triangulations: Napolitano & Turova JSP(16)-a1504 [random planar triangulations].
  @ Different global topologies: Burda & Jurkiewicz PLB(88) [on T2];
    Nigro PhyA(13)-a1010 [cylinder, spatially periodic boundary conditions];
    Assis & McCoy JPA(11)-a1011 [half-plane lattice];
    Lu & Wu PRE(01)cm/00 [non-orientable surface];
    Greenblatt a1409 [cylinder, finite-size corrections];
    Matsuura & Sakai PTEP(15)-a1507 [with twisted boundary conditions];
    Mohammed & Mahapatra IJMPC(18)-a1601 [different boundary conditions].
  @ Different interactions: Van den Nest et al PRL(08)-a0708 [arbitrary
      graph with inhomogeneous pairwise interactions equivalent to 2D square lattice with suitable couplings];
    Picco a1207,
    Blanchard et al EPL(13)-a1211 [long-range interactions, simulations of critical behavior].
  @ Other variations:
    Kutlu PhyA(97) [with more interactions];
    Roder et al PhyA(99) [high-T analysis];
    Bittner et al PhyA(00) [fluctuating];
    Dorogovtsev et al PRE(02)cm [Tc];
    Shiwa & Sakaniwa JPA(06)cm/05 [on a constant negative curvature surface];
    Rojas & de Souza PLA(09) [exactly-solvable models];
    Gandolfo et al CMP(15)-a1310 [on the Lobachevsky plane];
    Aasen et al JPA(16)-a1601 [with topological defects];
    > s.a. ising models.
  @ Relationship with different models: Wetterich NPB(17)-a1612 [and free massless Dirac fermions in 2D Minkowski space].
  >  Gravity-related models:
    see 2D gravity; spin networks.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 20 feb 2021