|  Riemannian Geometry | 
In General
  > s.a. connections; riemann tensor
  / 2D manifolds and 3D manifolds;
  differential geometry; metric tensors.
  $ Weak Riemannian
    manifold / structure: A manifold X with a smooth
    assignment of a weakly non-degenerate inner product (not necessarily
    complete) on Tx X,
    for all x ∈ X.
  $ Riemannian manifold /
    structure: A weak one with non-degenerate inner product (the model
    space is isomorphic to a Hilbert space); This means a Euclidean metric on the
    tangent bundle; Alternatively, a Riemann-Cartan manifold with vanishing torsion,
    i.e., with Tabc = 0.
  * Conditions: Any
    (paracompact) manifold can be given one, and any one can be deformed into
    any other, since at each point the set of possible metrics is a convex set
    (not true in the Lorentzian case).
  * Moduli space:
    Gromov's topological moduli spaces \(\cal M\)(n, ρ).
  * Invariants: In a purely
    metric geometry, the Euler class and the Pontryagin class are useful
    invariants for characterizing the topological properties of the
    manifolds; In a metric-affine geometry, where torsion comes into play,
    one can define a torsional invariant.
  * Relationship Euclidean-Minkowskian:
    One can make a Wick rotation; Or use u = x + i y,
    v = x − i y to map du dv
    → dx2
    + dy2.
  @ General references:
    in Geroch CMP(69).
  @ Texts, overviews: Bonola 55,
    Coxeter 57 ["non-Euclidean"];
    Yano & Kon 84;
    Willmore 93 [IIb, including complex];
    Lee 97;
    Petersen 97 [III];
    Berger 00, 03 [intro];
    Godinho & Natário 14 [III, with applications];
    Marsh a1412.
  @ Global: Petersen BAMS(99) [curvature and topology];
    Markvorsen & Min-Oo 03.
  @ Invariants: Connes IJGMP(08)-a0810 [unitary invariant];
    Nieh a1309 [torsional topological invariant].
  @ Related topics: Coleman & Korté JMP(94) [G-structures];
    Ferry Top(98) [Gromov-Hausdorff limits of polyhedra];
    Rylov m.MG/99,
    m.MG/00 [defining topology from metric];
    Papadopoulos JMP(06) [essential constants];
    Calderón a0905 [Ricardo's formula].
  > Online resources:
    see Wikipedia page.
Types and Examples > s.a. 2D, 3D
  and  4D geometries; euclidean geometry;
  riemann tensor; metrics
  [characterization] and types of metrics.
  * Example: An example of a weak
    Riemannian structure is the space X:= C([0,1], \(\mathbb R\)), with
  * Hyperbolic:
    Founded by Lobachevsky in 1829, normally means the geometry
    of constant negative curvature spaces.
  @ Hyperbolic: Milnor BAMS(82) [rev];
    Anderson 05 [II];
    Vermeer T&A(05) [plane, Ungar's addition and gyration].
  @ Non-positive curvature:
    Ballmann 95;
    Eberlein 96;
    Bridson & Häfliger 99;
    Taimina 18 [tactile introduction].
  @ Positive scalar curvature: Lesourd et al a2009 [on non-compact manifolds, and the Liouville  theorem]. 
  @ Constant scalar curvature:
    Mach & Ó Murchadha CQG(14) [spherically symmetric, any dimension].
  @ With curvature bounds:
    Cheeger & Colding JDG(97)
    + MR,
    JDG(00)
    + MR [lower bounds].
  @ On quantum states: Petz & Sudár JMP(96) [density matrices];
    Dittmann JGP(99)qp/98,
    Slater JGP(01)qp/00 [Bures metric];
    Petz JPA(02)qp/01 [Fisher metric];
    Pandya & Nagawat PE(06)qp/02;
    Pandya qp/03 [Lorentzian];
    Andai JMP(03)mp;
    > s.a. mixed states.
  @ On spaces of connections: Gibbons & Manton PLB(95)ht [Yang-Mills monopoles];
    Orland ht/96 [Yang-Mills configurations].
  @ Information metric: Groisser & Murray dg/96 [instantons];
    Parvizi MPLA(02)ht [non-commutative instantons];
    > s.a. types of metrics.
  @ Singular manifolds: Botvinnik G&T(01)m.DG/99 [Sullivan-Baas singularities];
    > s.a. distributions.
  @ Other topics: Atzmon MPLA(97)qp [on \(\cal C\)];
    Mendoza et al JMP(97) [1D, fluctuating];
    Anastopoulos & Savvidou AP(03)qp [on phase space];
    Deng & Hou JPA(04) [Randers metrics];
    Hiai & Petz a0809 [on positive-definite matrices];
    Berestovskii & Nikonorov DG&A(08) [δ-homogeneous];
    in Abramowicz a1212
      [circles, geodesic, circumferential and curvature radii];
    > s.a. instantons [moduli space];
      manifolds [G-manifolds];
      Osserman Manifold.
Space of Riemannian Metrics on a Manifold
  > s.a. Cheeger-Gromov Theory; distance;
  foliations; geomeotrodynamics;
  metrics.
  * Topology: For a 3-manifold
    M it is contractible but with non-trivial global differentiable structure,
    a cone on the vector space of symmetric bilinear forms on M.
  * Metric structure: A distance
    on the space of Riemannian metrics on a manifold M is
d(h, h') := supp ∈ M supv ∈ TpM, v ≠ 0 | ln [h(v,v) / h'(v,v)] | .
  @ General references:
    Fischer JMP(86) [structure of superspace];
    Gao JDG(90) [convergence];
    Schmidt gq/01-proc [and general relativity],
    gq/01-proc [3D homogeneous];
    Gomes a0909
      [structure of subspace of metrics with no Killing vector fields];
    Sormani a1006-fs,
  a1606-conf
      [on the convergence of sequences of Riemannian manifolds];
    Clarke JDG(13) [completion of the manifold of Riemannian metrics].
  @ Cotton flow: Kisisel et al CQG(08)-a0803 [3D];
    Kilicarslan et al JHEP(15)-a1502 [3D].
  @ Other flows: Letelier IJTP(08) [Riemann-Christoffel flow];
    > s.a. Ricci Flow; Yamabe Flow.
  @ Metric structure:
    in Eder GRG(80);
    Peters pr(87);
    Gromov 81,
    98 [for geometries];
    Seriu PRD(96)gq,
    CMP(00)gq/99 [based on spectra].
Concepts and Results > s.a. Covariant
  Derivative; Lines and geodesics;
  diffeomorphisms; Hopf-Rinow Theorem.
  @ Generalizations: de Beauce & Sen ht/04 [discretizations];
    > s.a. non-commutative geometry; phase
      space [quantum]; Sub-Riemannian Manifolds.
  @ Related topics: in Molzahn et al AP(92) [length scales];
  Cabrerizo et al JGP(12) [isotropic submanifolds].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 29 may 2021