|  Special Types of Metric Spaces | 
Types > s.a. Inner Product;
  norm; Ultrametric.
  * Polish space: A complete separable
    metric space; > s.a. causal curves.
  * Length space (path metric space):
    A metric space with distance d(x, y) equal to the lower
    bound on the length of curves between x and y (because of the
    triangle inequality, it suffices to ask that there exist a curve γ
    such that d(x, y) = length(γ)).
  @ General references: Uspenskij T&A(04) [Urysohn universal metric space].
  @ Between physical theories: Calmet & Calmet MPLA(11) [and information theory];
    Anselmi & Buttazzo PRD(11)-a1105 [as a measure of Lorentz-symmetry violation].
  @ Lorentzian length spaces:
    Kunzinger & Sämann AGAG-a1711;
    Grant et al AGAG(19)-a1804 [and spacetime inextendibility];
    > s.a. manifolds with metrics;
      causality conditions.
  @ Other special types: Mascioni DM(05) [finite spaces with random distances];
    Akhvlediani et al T&A(10) [Hausdorff and Gromov distances];
    Ben Rekeb et al T&A(13) [non-expansive homeomorphisms];
    Guido et al JFA(17)-a1512 [between von Neumann algebras];
    Bhatia et al LMP(19)-a1901 [positive-definite matrices].
Examples
  > s.a. spectral geometry; yang-mills gauge theory.
  * On Rn:
    One can define d(x, y):=
    supi |xi
    − yi|,
    or dp(x, y):=
    [∑i \(|x^i - y^i|^p\)]1/p;
    The case p = 2 is the Euclidean d.
  * On a vector space:
    The space X can be given a norm compatible with d iff
    d(ax, ay) = |a| d(x, y).
  * For locally finite subsets of
    Rn: d(S, S'):=
    min{2−1/2, inf D(S, S')},
    where D(S, S')
    is the half-line defined by D(S, S'):= {a > 0
    | S ∩ B1/a⊂ S'
    + Ba & S' ∩
    B1/a ⊂ S
    + Ba}
    [@ Gouéré mp/02].
  * For complex functions:
d(f, g):= ∫ dx |f(x) − g(x)|2 F(x) , for some positive real function F .
* For probability distributions / measures: Examples are the Fisher metric and the Wasserstein metric; Another possibility is
d(P, P'):= arccos(∑i=1N Pi1/2 P'i1/2) .
  * For spectra: The log-spectral distance (symmetric;
    Wikipedia page)
    and the Itakura-Saito distance (non-symmetric;
    Wikipedia page).
  * For paths in a metric space
    (X, d): Given two paths σ and τ:
    I → X,
d*(σ, τ):= supt ∈ I d(σ(t), τ(t)) ,
    or, for I = [0, ∞), D(σ, τ):=
    ∑n=1∞
    2−n
    [Fn(σ, τ)
    / (1+Fn)], where
    Fn(σ, τ):=
    sup0 ≤ t ≤ n
    d[σ(t), τ(t)].
  * For knots / links:
    The smallest number of crossings needed to go from one to the other.
  * For unlabelled posets:
    (a) One possibility is to call d(P, Q) the minimal
    number of relationships that must be changed in P to get a poset
    isomorphic to Q; (b) Another possibility is to use subposets.
  @ On discrete / finite spaces: Iochum et al JGP(01) [from non-commutative geometry];
    > s.a. graphs.
  @ Probability measures: [Fisher metric];
    Raviculé et al PRA(97);
    Casas et al qp/04 [vs Hilbert-space states];
    Abe et al JSP(07) [l1 distance];
    Budzyński et al CQG(08)-a0712 [and gravitational-wave data analysis];
    Costa et al a1210 [geometrical approach];
    > s.a. Wikipedia page on Statistical Distances.
  @ Other: Nabutovsky CMP(96) [triangulations of a compact manifold; D ≥ 4];
    Crooks PRL(07) [equilibrium states, thermodynamic length];
    Schuhmacher & Xia AAP(08) [point-process distributions];
    Kar & Rajeev PRD(12)-a1207 [on spacetime, non-Riemannian metric from a scalar quantum field  theory];
    Nekvinda & Zindulka Ord(12) [monotone];
    Eldering & Vankerschaver DG&A(14)-a1401 [on the space of parametrized curves modulo rigid transformations].
For Quantum States
  > s.a. coherent states; types of metrics;
  Propagator; riemannian geometry.
  * Bures metric:
    Introduced by Uhlmann; It generalizes the Fubini-Study metric to mixed states.
  @ General references: Wootters PhD(80),
    PRD(81);
    Braunstein & Caves PRL(94);
    Raviculé et al PRA(97);
    Dodonov et al PS(99)qp/98 ["energy-sensitive"];
    Rieffel DocM(99)m.OA;
    Ozawa PLA(00)qp [re Hilbert-Schmidt];
    Trifonov & Donev qp/00-wd;
    in Giovannetti et al PRA(03)qp/02;
    Lee et al PRL(03)qp;
    Majtey et al EPJD(05)qp/04 [and distinguishability];
    Arbatsky qp/05 [quantum angle];
    Li et al a1512 [modulus fidelity, for many-body systems];
    Shivam et al IJQI(18)-a1609 [based on quantum relative entropy].
  @ Various types of distances: Brody & Hughston JGP(01) [Fubini-Study d];
    Lamberti et al IJQI(09)-a0807-conf,
    Osán & Lamberti PRA(13)-a1303 [based on entropy and purification];
    Cohen PRA(09)-a0906 [statistical distance];
    Anshu et al IEEE(16)-a1404v3 [trace distance];
    Wang et al a2007 [physical distance];
    Girolami & Anzà a2012
      [weighted distances, between many-body states].
  @ Between density matrices:
    Życzkowski & Słomczyński JPA(98)qp/97 [Monge];
    Petz & Sudar in(99)qp/01 [Fisher d];
    Slater JMP(06);
    > s.a. mixed states.
  @ Bures metric: Twamley JPA(96) [thermal squeezed states];
    Slater PLA(98)qp/97;
    Dittmann JPA(99) [explicit formulae].
  @ Between classical and quantum states: Klauder qp/03;
    Abernethy & Klauder FP(05)qp/04.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 11 dec 2020