|  Chaos in Field Theories and Gravitational Systems | 
In General
  > s.a. chaos / quantum phase transitions.
  @  General references:
    Latora & Bazeia IJMPA(99) [2 scalar fields];
    Salasnich JMP(99) [homogeneous];
    Brummitt & Sprott PLA(09) [the simplest chaotic partial differential equations];
    > s.a. yang-mills gauge theory.
  @ In quantum field theory: Matinyan & Müller FP(97)ht/96,
    PRL(97) [quantum fluctuations];
    Cvitanović PhyA(00)n.CD;
    Berg et al hl/00-conf [gauge theories];
    Kuvshinov & Kuzmin PLA(02)ht [criterion];
    Beck 02.
In Yang-Mills Theories > s.a. quantum chaos.
  @ General references: Baseyna et al JETP(79);
    Matinyan et al JETP(81);
    Chirikov & Shepelyanskii JETP(81), SJNP(82);
    Kawabe & Ohta PRD(90),
    PRD(91);
    Kawabe PLB(92);
    Wellner PRL(92);
    Biró et al 95;
    Kawabe & Ohta PLB(94);
    Nielsen et al cd/96,
    cd/96-conf;
    Salasnich MPLA(97)qp [quantum];
    Casetti et al JPA(99)cd/98 [U(1) lattice gauge theory];
    Biró et al NPPS(00)hp/99;
    Bambah et al ht/02-proc;
    Narayan & Yoon a1903 [3D Chern-Simons higher-spin gravity].
  @ Integrability: Witten JGP(92);
    Inami et al NPB(06)ht [non-integrability of self-dual Yang-Mills-Higgs theory];
    > s.a. self-dual solutions.
  @ Qantum  theories: Salasnich MPLA(97)qp;
    Matrasulov et al EPJC(05)hp/03 [Yang-Mills-Higgs];
    McLoughlin et al a2012 [perturbative super-Yang-Mills].
In  Newtonian Gravity and Astronomy > s.a. newtonian orbits
  [three-body]; non-equilibrium statistical mechanics.
  * History: The study of the
    three-body problem, motivated by questions about the stability of the solar
    system, started the discipline of chaotic dyamics in a way.
  * Results: Results of simulations
    show that the solar system, while chaotic, is not seriously unstable over time
    scales of up to billions of years.
  @ Reviews / books:
    Contopoulos in(79);
    Gurzadyan AIP(03)ap/04 [astrophysics/cosmology];
    Regev a0705-en [astrophysics];
    Sun & Zhou 15 [celestial mechanics].
  @ Chaos / stability of the Solar System: Peterson 93;
    Lecar et al ARAA(01)ap [rev];
    Batygin & Laughlin ApJ(08)-a0804;
    Laskar a1209-talk;
    Zeebe ApJ(15)-a1506 [statistically inconclusive results];
    Hoffmann et al MNRAS(17)-a1508 [terrestrial planet formation].
  @ Solar system objects:
    Sussman & Wisdom Sci(88)jul [Pluto];
    Lissauer RMP(99);
    Murray & Holman Sci(99)mar-ap [outer solar system];
    Haghighipour JMP(02)ap/01 [partial averaging];
    Murray & Holman Nat(01)ap;
    Quillen AJ(03)ap/02 [solar neighborhood];
    Hayes nPhys(07)sep-ap [outer solar system];
    news S&T(08)apr [Mercury instability];
    Batygin & Morbidelli CMDA(11)-a1106 [planetary systems with dissipation];
    Shevchenko ApJ(15)-a1405 [around gravitating binaries];
    Batygin et al ApJ(15)-a1411 [Mercury, and dynamical structures of planetary systems];
    > s.a. solar-system objects [asteroids].
  @ Galaxies: Merritt CMDA(96)ap/95-in,
    Sci(96)jan-ap [elliptical];
    Merritt & Valluri ANYAS(98)ap/97;
    Kandrup in(01)ap/00,
    ap/02-conf,
    et al MNRAS(03)ap/02;
    Jung & Zotos MRC(14)-a1511 [3D galaxy model].
In Relativistic Gravity
  @ Gravitating bodies: Addazi a1510 [inside realistic quantum black holes].
  > Gravitational field: see quantum cosmology;
    quantum-gravity phenomenology; string phenomenology.
 Related topics: see chaos in gravitational-field
  dynamics; chaotic motion in a gravitational field.
 Related topics: see chaos in gravitational-field
  dynamics; chaotic motion in a gravitational field.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 1 jan 2021