|  Entropy Bounds | 
In General
  > s.a. boundaries in field theory; holography.
  * Idea: An upper limit
    for the amount of entropy a system can have; Depending on the context or
    motivation, it can be given in terms of the system's energy (Bekenstein)
    or size, for example surface area; From considerations based on a fundamental
    length, it is normally assumed that quantum gravity implies an upper limit
    on the entropy for a bounded region.
  * Remark: One possible
    objection to the existence of such a bound, the "species problem",
    is that as the number of fields considered in a theory grows, so does the
    entropy of a region, apparently unboundedly; Addessed by remarking that the
    number of fields actually present is (probably) finite, and that if one changes
    the number of fields in a theory one can also change the values of the constants
    in the bound.
  @ General references: Bekenstein PRD(81);
    Schiffer & Bekenstein PRD(89);
    Zaslavskii CQG(96);
    Bousso JHEP(01)ht/00 [in de Sitter and Minkowski];
    Bekenstein FP(05)qp/04 [how it works];
    Marolf ht/04-GR17 [rev];
    Rideout & Zohren CQG(06)gq [from causal sets].
  @ Consequences: Karch ht/03 [fluid viscosity bound];
    Medved MPLA(06)ht/05 [cosmology, dark energy and inflation].
  @ Hyperentropic objects: Marolf & Sorkin PRD(04)ht/03 [Hawking radiation];
    Bekenstein PRD(04)ht;
    Hod PLB(11)-a1108 [and the generalized second law].
  @ Other violations: Page gq/00,
    ht/00;
    Bekenstein gq/00 [rebuttal];
    Page JHEP(08)ht/00 [and fix];
    Masoumi & Mathur PRD(15)-a1412 [of the covariant bound].
  > Online resources: see Wikipedia pages 
    on the Bekenstein bound and
    Bousso's holographic bound.
Bekenstein Bound
  > s.a. Bekenstein-Hod Bound; GUP phenomenology.
  * Idea: For a system with
    energy E and typical size L, a universal bound on the
    entropy is S ≤ 2π EL/c\(\hbar\).
  * Result: Not satisfied by
    systems satisfying modified forms of the Heisenberg uncertainty principle.
  @ General references: Bekenstein PRD(94)gq/93;
    Marolf & Roiban JHEP(04)ht [open issue];
    Casini CQG(08)-a0804 [and relative entropy];
    Pesci CQG(10)-a0903 [and strength of gravity, holography];
    Schmitt a0901;
    Bekenstein PRE(14)-a1404 [for macroscopic systems];
    Longo & Xu JGP(18)-a1802 [derivation];
    Page a1809-in [formulation and proof];
    Bousso a1810-in [and black-hole entropy];
    Buoninfante et al a2009 [generalized, with GUP];
    Acquaviva et al a2011
      [from fermionic fundamental constituents].
  @ And cosmology: Gibbons et al PRD(06)ht [in AdS spacetime];
    Haranas & Gkigkitzis MPLA(13)-a1406 [and cosmological parameters];
    Banks & Fischler a1810-in.
Holographic / Covariant Bound > s.a. Relaxation
  [universal bound on relaxation time]; twistors.
  * Holographic bound: If A
    is the area of a circumscribing surface, the entropy of a matter system
Smatter ≤ A / 4G\(\hbar\)c3 ;
    This formula breaks down in large curvature/gravity situations.
  * Covariant bound:
    (Bousso) Formulated in terms of the fields intercepted by the ingoing
    light sheet from a surface, under some assumptions and up to where the
    surface has caustics, if any, as
Slight sheet ≤ A / 4G\(\hbar\)c3 .
  @ General references: Bousso JHEP(99)ht,
    comment Lowe JHEP(99);
    Bekenstein PLB(00)ht,
    ht/00-MG9 [second law];
    Flanagan et al PRD(00)ht/99;
    Das et al PRD(01)ht/00 [isolated horizons];
    Low CQG(02)gq/01;
    Casini CQG(03)gq/02 [geometric, and spacetime cutoff];
    Bousso RMP(02)ht;
    Mayo CQG(02);
    Yurtsever PRL(03)gq [from local quantum field theory],
    comment Aste ht/06;
    Husain PRD(04)gq/03 [Einstein-scalar examples];
    Ling & Zhang gq/06 [high-order corrections];
    Pesci CQG(08)-a0803 [statistical-mechanical meaning];
    Ashtekar & Wilson-Ewing PRD(08)-a0805 [and loop quantum cosmology];
    Bousso et al PRD(10)-a1003 [saturation];
    Van Acoleyen PRD(10)-a1009 [operational view];
    Bousso PRD(16)-a1606 [asymptotic boundary version];
    Hadi et al a1609 [and Padmanabhan's emergent paradigm];
    Hod PRD(18)-a1806 [in higher-dimensional spacetimes];
    Matsuda & Mukohyama a2007 [beyond general relativity].
  @ Sufficient conditions: Bousso et al PRD(03)ht;
    Gao & Lemos PRD(05)gq.
  @ Applications: Danielsson JCAP(03) [inflation]; 
    Gao & Lemos JHEP(04)ht [collapse];
    Hogan ap/07 [uncertainty principle and possible measurement];
    Gersl IJMPD(09)-a0804 [ideal gas of massive particles];
    He & Zhang IJMPD(09)-a0805-GRF [on the dynamical horizon];
    Li & Zhu CTP(12)-a1001 [dynamical horizon in lqc];
Tamaki PRD(16)-a1607 [in covariant lqg].
Cardy-Verlinde Formula > s.a. gravitational entropy.
  * Idea: A holography-inspired
    bound in terms of Casimir energy on field entropy in cosmology; In some limit
    it can be expressed in terms of the Hubble constant.
  @ General references: Verlinde ht/00;
    Cai PRD(01) [Anti-de Sitter black holes];
    Youm PLB(02);
    Nojiri & Odintsov PLB(02) [in Yang-Mills theory];
    Lin & Cai PLB(06) [re AdS black holes].
  @ Corrections: Nojiri et al MPLA(01);
    Momen & Sarkar PLB(02) [super-Yang-Mills];
    Setare PLB(03) [topological Reissner-Nordström-de Sitter],
    PRD(04)ht [from generalized uncertainty principle];
    Setare IJMPA(06)gq,
    IJTP(07) [non-commutativity],
    IJMPA(08)-a0807 [Kerr black hole];
    Darabi et al MPLA(11) [self-gravitational corrections for charged BTZ black hole].
References > s.a. laws of black-hole thermodynamics.
  @ Quantum fields: Solodukhin PRD(01)gq/00 [scalar field in a cavity];
    Brevik et al AP(02)
      [\(\mathbb R\) × S3 geometries];
    Strominger & Thompson PRD(04)ht/03 [quantum correction to the Bousso bound];
    Page JHEP(08)ht/00 [non-gravitational];
    Bousso et al PRD(14)-a1404 [proof of a quantum Bousso bound].
  @ Charged system: Bekenstein & Mayo PRD(00)gq/99;
    Hod gq/99/PRD,
    PRD(00)gq/99;
    Mayo PRD(99)gq;
    Gour CQG(03)gq [rotating].
  @ Causality-based: Brustein & Veneziano PRL(00)ht/99;
    Brustein et al PLB(01) [and conformal field theory],
    PRD(02) [non-singular cosmology];
    Brustein LNP(08)ht/07 [and cosmology, rev].
  @ Related topics: Hod PRD(00)gq/99 [rotating system];
    Birmingham & Sen PRD(01)ht/00 [black holes in conformal field theory];
    Gour PRD(03)gq/02 [extensive];
    Elizalde & Tort PRD(03)
      [massive scalar in S1 × S3];
    Mignemi PRD(04)ht/03 [in 2D];
    Berry & Sanders JPA(03)qp [and relationships];
    Zachos JPA(07) [classical bound, including Rényi entropy];
    Abreu & Visser JPCS(11)-a1011 [for uncollapsed matter],
    JHEP(11)-a1012 [uncollapsed rotating bodies];
    Xu & Ma MPLA(11)-a1106 [spacetime discreteness and uncertainty principle].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 29 may 2021