|  Gas | 
In General > s.a. Kinetic Theory;
  matter; ideal gas.
  * Idea: A highly compressible fluid,
    in which the mean interparticle distance is much greater than their size.
  @ General references: Rohrmann PhyA(05)cm/04 [statistical mechanics, new formalism];
    Serre BAMS(10) [initial-boundary value problem].
  @ Statistical mechanics:
    Fernández et al RVMP(16)-a1508 [uniqueness and stability of equilibrium measure];
    > s.a. fluctuations;
      statistical mechanical systems.
  @ Cold gases:
    Seiringer a0908-conf [mathematical];
    Yukalov LP(13)-a1304 [tutorial].
Boson Gas
  > s.a. bose-einstein condensation; ideal gas;
  renormalization theory; sound propagation;
  superfluids.
  @ General references:
    Lenard JMP(66) [1D, impenetrable];
    Chuu  et al PRL(05) [sub-Poissonian number fluctuation];
    Toms JPA(06) [statistical mechanics, confined geometry];
    Erdős et al PRA(08)-a0806 [ground-state energy];
    Giuliani & Seiringer JSP(09) [high density, ground-state energy];
    Babichenko & Babichenko PLA(09) [in a random external field];
    Escobedo et al AP(11)-a1008 [relaxation dynamics];
    Shi PRA(10)-a0912 [two-species mixture];
    Yin JSP(10) [upper bound on the free energy];
    Cazalilla et al RMP(11) [1D bosons];
    Petrova et al JPCS(11)-a1203 [Gaussian fluctuations];
    Stamper-Kurn & Ueda RMP(13) [spinor Bose gases];
    Price & Swendsen AJP(13)nov [numerical computation];
    Aaen a1401 [dilute gas ground-state energy];
    Akant et al a1602 [thermodynamic limit].
  @ Interacting particles: 
    Deuar & Drummond JPA(06);
    Martin IJTP(05) [repulsive potential, polymer representation];
    Nattermann AJP(07)oct [weakly interacting, from heuristics and thermodynamics];
    Hertzberg JCAP(16)-a1609 [classical vs quantum behavior];
    Brietzke et al a1901
      [dilute gas, lower bound on the ground-state energy];
    > s.a. Virial Expansion.
  @ Cold boson gas:
    Deeney & O'Leary PLA(11),
    EJP(11)
      [behavior below the Bose-Einstein temperature];
    Camacho & Castellanos MPLA(12) [gravitomagnetic effect and the detection of the Earth's rotation];
    Yngvason a1402-proc [lectures].
  @ Photons: Leff AJP(02)aug [in introductory physics];
    Panković & Kapor a1103 [complete quantum thermodynamics];
    Sokolsky & Gorlach PRA(14)-a1307 [in a  finite box, thermodynamics and finite-size effects];
    > s.a. Adiabatic Transformation;
    generalized thermodynamics;
    modified lorentz group.
Fermion Gas
  > s.a. fermions; Virial Expansion.
  * Cold: Quantum degenerate,
    strongly interacting Fermi gases, were first produced in 2002; They can
    be efficiently produced by evaporative cooling in an optical trap and are
    now widely studied; They provide model systems for tabletop studies of
    high-temperature superconductivity, neutron stars, and nuclear matter.
  @ General references:
    Elze et al JPG(80) [ideal, relativistic];
    Jin pw(02)apr [of atoms];
    Seiringer CMP(06)mp/04 [pressure];
    Lieb et al mp/05-proc [dilute, ground-state energy];
    Leboeuf & Roccia PRL(06) [2-component, level density];
    Jakšić et al CMP(09) [locally interacting, central limit theorem];
    Jo et al Sci(09)sep [ferromagnetism];
    Martiyanov et al PRL(10) [2D fermi gas, observation];
    Blume Phy(10) [behavior from properties of three trapped atoms];
    Zheng & Bonasera PLB(11) [density and temperature from quantum fluctuations];
    Frank et al PRL(11) [energy of the perturbed Fermi sea];
    Ku et al Sci(12)jan
    + news mit(12)jan [gas of fermionic atoms turning superfluid];
    Yefsah et al PRL(11) [2D Rb atoms];
    Barletti JMI-a1509
      [hydrodynamic equations for an electron gas];
    > s.a. Hartree-Fock Equation.
  @ Finite-size: Gebert MPAG(15)-a1406 [energy];
    Su et al PLA(14) [isobaric expansion coefficient and isothermal compressibility];
    Aydin & Sisman PLA(14) [discrete properties at nanoscale].
  @ Cold: Thomas & Gehm AS(04)#3 [optically trapped];
    Kowalski et al PRD(07)-a0712 [relativistic, T = 0];
    Giorgini et al RMP(08);
    Thomas PT(10)may;
    Bedaque Phy(10) [parallel layers of ultracold fermions];
    Kuhnle et al PRL(10) [universal relations for pair correlations];
    Ayryan et al a1703;
    Massignan Phys(19)mar
      [transition from quantum Fermi liquid to Boltzmann gas];
    > s.a. clocks; composite quantum systems;
      Fermi-Einstein Condensation; matter phenomenology
      in quantum gravity; superfluids.
And Gravity / Self-Gravitating Gas
  @ Statistical mechanics: de Vega et al CSF(99)ap/98;
    de Vega & Sánchez PLB(00),
    NPB(02)ap/01,
    NPB(02)ap/01;
    de Vega & Siebert PRE(02)ap/01;
    de Vega & Sánchez ap/05-conf,
    CRS(06)ap;
    Ramos-Caro et al PRD(12)-a1206 [kinetic theory, axial symmetry];
    Santos et al AP(17)-a1709 [non-extensive kinetic theory for degenerate quantum gases];
    Chavanis a1908 [quantum Fermi gas],
    a1908 [classical Boltzmann gas].
  @ Related topics: de Vega & Sánchez NPB(05)ap/03 [cluster expansion];
    de Vega & Siebert NPB(05) [with dark energy];
    Siebert PhD(05)ap;
    Bhattacharya et al PRD(17)-a1702 [gas in an external gravitational field, entropy and surface scaling];
    > s.a. gravitating matter.
Other Types
  > s.a. atomic physics; composite
  quantum systems; diffusion; Lattice Gas;
  magnetism [ionized gas]; statistical mechanical systems.
  * Nearly ideal gases: Their
    equations of state can be written down as series expansion in some parameter
    characterizing their deviation from ideal-gas behavior; For example, the
    Mayer Series Expansion and the
    Virial Expansion.
  * Lorentz gas: A system
    of fixed dispersing scatterers, with a single light particle moving among
    these and making specular collisions on encounters with the scatterers;
    It can be taken to model a completely ionized gas, in which ions are assumed
    to be stationary and interactions between electrons are neglected.
  * Granular gases:
    The main characteristic of a granular gas, which makes it fundamentally
    different from ordinary molecular gases, is its tendency to form clusters,
    i.e., to spontaneously separate into dense and dilute regions.
  @ Strongly interacting gases:
    Chang & Pandharipande PRL(05) [ground state];
    Stewart et al PRL(10)
    + Sheehy Phy(10) [confirmation of Tan relations];
    Hu et al NJP(10) [dilute fermion gas].
  @ Non-ideal gases: Coutant & Rajeev a0807 [quantum thermodynamics];
    Mancarella et al NPB(14)-a1407 [energy-pressure relation and deviation from scale-invariant gas behavior];
    Pulvirenti & Tsagkarogiannis JSP(15)-a1409 [finite-volume corrections and correlations];
    > s.a. extended thermodynamics [dense gases].
  @ Lorentz gas: van Beijeren & Muelken PRE(05)nlin/04 [d dimensions, open boundaries, thermodynamic formalism];
    Angstmann Morriss PLA(12) [triangular periodic, diffusion coefficient];
    Marklof a1404-proc [low-density limit];
    in Dorlas et al a1902
      [cluster expansion for correlation functions].
  @ Granular gases:
    Brilliantov & Pöschel 04 [r JPA(05)#47];
    Van der Weele CP(08) [clustering];
    Bisi et al JCP(12) [in a host medium, numerical].
  @ (Lattice) dipole gas: Dimock JSP(09)-a0812 [infinite-volume limit];
    Le a1305 [correlation functions].
  @ Other types: Price & Laibe a1411-proc [dust-gas mixtures, non-equilibrium simulations].
  > Related topics: see Chaplygin Gas;
    condensed matter [liquids]; Dyson Gas [charged];
    loops; resonance [Feshbach resonances in ultracold gases];
    viscosity.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 2 oct 2020