|  Semiclassical Effects and Degree of Quantumness | 
Specific Effects, Concepts, and Examples
  > s.a. classical mechanics [effective dynamics]; fluctuations;
  operators; phase transition; quantum
  information.
  * Continuous spontaneous localization:
    In the GRW prescription, obtained with non-linear and stochastic effects.
  @ Continuous spontaneous localization:
    Ghirardi et al PRD(86) [comment
    Joos PRD(87)
    + reply PRD(87)],
    FP(88);
    Benatti et al NCB(87) [and measurement];
    Bell in(89);
    Ghirardi et al FP(90),
    PRA(90);
    Pearle PRA(93),
    in(97)qp/98.
  @ Measurement and decoherence:
    Mensky PU(98)qp,
    qp/98-proc,
    00;
    Furuta PRA(01) [model];
    Bhattacharya et al PRA(03)qp/02;
    Zurek RMP(03);
    Ford et al PRA(01)qp/03;
    Schlosshauer RMP(04)qp/03 [and interpretations];
    Ghose et al PRA(05)qp/04;
    > s.a. decoherence; types of measurement.
  @ And the correspondence principle:
    Habib et al PRL(98) [non-linear dynamics];
    Bernal et al a1101 [mathematical formulation, and harmonic oscillator].
  @ Trajectories:
    Brun et al PLA(97);
    Greenbaum et al PRE(07)-a0705 [vs phase space distributions];
    Nölle a1005 [geometric approach].
  @ Measures: Fedichkin et al SPIE(03)cm.
  @ Non-classical effects: Resch et al PRA(01) [in single-γ detection];
    Sikivie & Todarello PLB(17)-a1607 [duration of classicality].
  @ Examples: Brun et al PRL(03)qp/02,
    PRA(03)qp/02,
    PRA(03)qp/02 [random walk];
    Man'ko et al PLA(05);
    Benet et al PRA(07)qp/06 [chemical reactions];
    Jasiak et al NJP(09) [electrons in thin metal films];
    Teta EJP(10)-a0905 [straight tracks in a cloud chamber];
    news seed(09)jul [Caltech experiment];
    Radonjić et al PRA(12) [quantum spin].
  > Related topics:
    see locality; Loschmidt Echo;
    matter [stability]; quantum fields;
    quantum chaos; relativistic quantum theory;
    scattering; SQUIDs.
  > States and simple models:
    see Baker's Map; coherent
    states; quantum states.
  > Systems:
    see composite systems;
    ergodic systems; macroscopic
    systems; photons; quantum
    systems; spin models; spin systems.
 Related
  pages: see quantum state evolution; relationship classical-quantum theory;
  semiclassical limit; semiclassical states.
 Related
  pages: see quantum state evolution; relationship classical-quantum theory;
  semiclassical limit; semiclassical states.
Quantum vs Classical States, Quantumness and Classicality
  > s.a. correlations [quantum discord];
  quantum measurement.
  * Measures / degree: Some
    notions used to quantify quantumness are contextuality and negativity
    of the Wigner function.
  * Idea: Quantum states
    differ from classical ones in their localization, interference properties
    and entanglement; One way to check when a system will start to deviate from
    its classical behavior is to look for when the quantum Wigner function
    deviates from the corresponding classical phase-space probability density.
  @ Quantum vs classical states: Loris & Sasaki PLA(04) [eigenvalues vs normal modes];
    Yoder AJP(06)may [probability densities];
    Hen & Kalev qp/07 [quantum states approaching classical distributions];
    Kiesel et al PRA(08)-a0804 [based on Glauber-Sudarshan P-function];
    Ellis AP(12)-a1108 [and contextuality];
    Kiesel PRA(13)-a1303,
    Park et al PRL(15)-a1505 [in terms of phase-space distributions];
    Egloff et al PRX(18) [framework];
    > s.a. distances.
  @ Quantumness and classicality: Anastopoulos PRD(99)qp/98;
    Hall PRA(00) [Fisher information];
    Costa Dias JMP(02)qp/99;
    Malbouisson & Baseia PS(03)qp/02 [field theory];
    Avelar et al qp/03;
    Zurek qp/03 [information and environment];
    Alicki et al JPA(08) [quantumness witnesses];
    Gehrke et al PRA(12)-a0904 [quantification];
    Giraud et al NJP(10)-a1002;
    Zhu et al PLA(11)-a1010;
    Schmid & Duenki a1101;
    Tammaro FP(12)-a1110 [non-classical, non-quantum theories];
    Kot et al PRL(12)-a1110 [breakdown of a classical description];
    Fazio et al PRA(13)-a1201 [via anticommutators];
    Steinhoff a1204;
    Facchi et al JPA(14)-a1309 [from algebra of observables];
    Gittsovich et al PRA(15)-a1412 [macroscopic superposition states];
    Reusch et al PRA(15)-a1501 [entanglement witnesses, indistinguishable particles];
    Fresta et al PRA(15)-a1508;
    Bardet a1511 [classical and quantum parts of an environment];
    Castrillón et al a1608 [for single systems];
    Delfosse et al NJP(17)-a1610 [contextuality and negativity of the Wigner function];
    Alexanian PRA(16)-a1610 [different criteria];
    Bose a1701 [and non-Gaussianity, in terms of Wehrl entropy];
    Tan et al a1906 [hierarchy of non-classicality measures];
    Abbasli et al a2001
      [degree of classicality, in quasiprobability representations];
    Park et al a2005 [hierarchy of criteria in phase space];
    Milz et al PRX(20) [non-Markovian processes];
    > s.a. correlations; types of distances.
  @ And entanglement: Everitt et al NJP(05);
    Groisman et al qp/07;
    Piani & Adesso PRA(12)-a1110;
    Facchi et al JPA(12)-a1111;
    Killoran et al PRL(16)-a1505.
  @ For specific types of states / systems:
    Korbicz et al PRL(05)qp/04 [harmonic oscillator];
    Girolami et al JPA(11)-a1008 [non-classical correlations for two-qubit mixed states];
    Puri PRA(12)-a1410 [for a system of spin-1/2 particles];
    Trapani et al PRA(15)-a1411 [oscillator + environment, dynamics of classicality];
    Miranowicz et al PRA(15)-a1502 [single-qubit states];
    Kumari & Ghose PRA(18)-a1802 [chaotic systems, near periodic orbits];
    Marian & Marian a1909 [quantum optics].
  @ Quantumness vs classicality tests:
    Alicki & Van Ryn JPA(08);
    Brida et al OE(08)-a0804;
    Luís PRA(10);
    Ferro et al EPJD(18)-a1501 [interferometric setup];
    Hameedi et al a1511 [unconditional experimental test];
    Marletto & Vedral a2003 [mediating the generation of entanglement].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 6 jan 2021