|  Spin and Spinors | 
In General
  * Idea: Spinors are
    elements of vector spaces carrying spinor representations of the rotation
    group, where a 2π rotation is −1.
  * Interpretation:
    Spinors themselves cannot have a physical interpretation, but bilinear
    products of spinors and complex conjugate spinors can (e.g., a 4D null
    vector can be seen as a tensor product of an SL(2, \(\mathbb C\)) spinor
    and its complex conjugate); They can however have geometrical
    interpretations as generalized geometrical objects.
  > Discrete / generalized settings:
    see causal sets; finsler spaces;
    lattice field theories; non-commutative
    theories.
General References > s.a. clebsch-gordan theory.
  @ Books and intros: Chevalley 54;
    Cartan 66;
    in Wald 84;
    Penrose & Rindler 84,
    86;
    Benn & Tucker 87;
    Lawson 89;
    Esposito 95;
    Hladik 99;
    Carmeli & Malin 00;
    Cahill & Cahill EJP(06)ht/05 [Majorana & Dirac, pedagogical];
    Lachièze-Rey a1007-conf;
    Torres del Castillo 10;
    Todorov BulgJP(11)-a1106 [intro];
    Steane a1312 [intro];
    Rios & Straume a1402-book
      [correspondence between quantum and classical mechanics];
    Cahill EJP(21)-a2104 [and spin-1/2 fields, pedagogical].
  @ History and reviews:
    van der Waerden (tr Pasa) NGWG(29)-a1703 [spinor analysis];
    Fröhlich a0801-ln;
    Milner a1311-conf,
    IJMPcs-a1502.
  @ Other general references:
    Pauli ZP(25);
    Bergmann PR(56);
    Milnor EM(63);
    Plebański pr(64);
    Pirani in(65);
    Penrose in(68);
    Clarke GRG(71);
    Lee GRG(73);
    Hitchin AiM(74);
    Plebański pr(74);
    Isham PRS(78);
    Whiston JPA(78);
    meeting 6.06.1984; Magnon JMP(87);
    Liu JMP(91);
    Sharma AP(91);
    Sverdlov a0808 [novel definition];
    Andreev PhD-a1204 [in 6D Riemannian spaces];
    Cederwall JHEP(12) [complex geometry of D = 10 pure spinor space];
    Budinich JPA(14)-a1208 [null vectors and spinors in Clifford algebra].
Spin in Physical Theories
  > s.a. coupled-spin models; formulations of general
  relativity; types of spinors [including ELKO, and representations].
  * Idea: Spinors are
    used in physics mainly for defining fermions; They are natural in quantum
    mechanics, but they are also very useful in classical theories (for example,
    Witten's proof of the positive-energy theorem, the spinorial decomposition
    of the curvature tensor, principal null directions of Weyl tensors).
  @ Nature and use:
    Rindler AJP(66)oct;
    Ohanian AJP(86)jun;
    Morrison SHPMP(07) [ontological and epistemic status];
    Kosmachev a0709;
    in D'Ariano a1110-conf [simulation with a quantum computer];
    Durfee & Archibald a1201;
    Aerts & Sassoli de Bianchi SC(17)-a1501 [and directions in Euclidean space];
    Ertem a1801-ln [geometry and applications].
  @ In quantum mechanics: Budinich NCB(08)-a0803;
    Ovsiyuk et al HNGP-a1410-conf [quantum effects];
    Samuel a1907 [twisted spin];
    > s.a. relativistic quantum mechanics [relativistic spin operator].
  @ Phenomenology / experiments: Christian IJTP(15)-a1211 [macroscopic observability of sign change under 2π rotations];
    Lin et al PRL(15) [measuring the spin of individual atoms];
    Giacomini et al a1811 [operational definition, quantum reference frames];
    > s.a. electronic technology [spin currents, spintronics].
  > And particles:
    see electron; fermions;
    hadrons; neutron;
    proton; spinning
    particles; spinors in field theory; types of particles.
Models, Geometrical Interpretations and Related Topics
  @ Spinorial chessboard:
    Budinich & Trautman JGP(87),
    88.
  @ Models, geometric interpretations:
    Ogievetsky & Polubarinov JETP(65);
    Newman & Winicour JMP(74) [from worldline in complex Minkowski space, and twistors];
    Ulmer IJTP(77);
    Bugajska IJTP(79);
    Barut & Meystre PLA(82) [classical vs quantum spins];
    Czachor FPL(92)qp/02 [and Bell's theorem];
    Hadley CQG(00)gq [geons in pure gravity];
    Bosanac FdP(01)qp;
    Mauro PLB(04)qp [from geometric de-quantization];
    Sverdlov a0802 [geometrical description];
    Savasta & Di Stefano a0803;
    Creutz AP(14)
      [emergent spin from spinless particle on a lattice];
    McLachlan et al JNS(16)-a1505 [Hamiltonian, time-discretization scheme];
    Novak & Runkel a1506 [from networks of topological defects];
    Heiner et al a1811 [non-linear dynamics and chaos];
    > s.a. Kinks.
  @ Related topics:
    Sachs BJPS(89);
    Weigert JOB(04)qp/99 [spin coherent states];
    Ferrara FdP(01)ht/00-proc [and spacetime superalgebras];
    Kobayashi ht/05 [origin of spin?];
    García-Parrado & Martín-García CPC(12)-a1110 [Mathematica package];
    Céleri et al PRA(16)-a1607
      [spin, localization and uncertainty].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 15 apr 2021