|  Fermions | 
In General
  > s.a. spinor fields; particle types;
  spinning particles; statistical
  mechanical systems.
  * Idea: Particles obeying
    Fermi-Dirac statistics, such that any N-particle quantum state
    changes sign when any two of them are exchanged; They are usually
    represented in physics by spinor fields, belonging to a representation
    space for the Poincaré group with half-integer value of the spin
    s, and their role is that of elementary constituents of matter.
  @ General references: Zimborás et al EPJQT(14)-a1211 [dynamical systems approach];
    Lin et al ChPB(13)-a1307 [diagrammatic categorification of fermion algebra];
    Lee a1312 [massive, in 2+1 dimensions];
    Lee a1404 [mass-dimension-one Elko fermions];
    Finster a1404 [index of the fermionic signature operator];
    Espin a1509-PhD [second-order formulation];
    Szalay et al a2006 [and quantum information].
  @ Interacting: Finster a0908 [action and continuum limit];
    Braghin EPJP(15)-a1505 [higher-order effective interactions];
    synopsis Phy(19) [atoms pairing up].
  @ Systems of fermions: Schilling PRA(15)-a1409 [occupation numbers in N-fermion states];
    Caulton a1409 [and mereology].
  @ Many-body systems:
    Mattis a1301-ch [D > 1];
    Watson a1506 [enforcing the Pauli principle on paper];
    Fournais et al a1510,
    Ribeiro & Burke a1510 [semiclassical limit].
  @ Quantization: Borstnik & Nielsen a2007-proc,
      a2007-proc [based on Clifford and Grassmann algebras];
    > s.a. types of quantum field theories
      and modified theories.
  > Specific theories:
    see dirac fields; low-spin field
    theories [spin-1/2 and 3/2]; high-spin field theories;
    gas; kaluza-klein phenomenology;
    fermions in lattice field theory [including doubling];
    supersymmetry; types of field theories.
Relationship with Bosons
  > s.a. Bosons [relationship, transformations between fermions and bosons];
  composite quantum systems.
  * Bound states: An
    even number of fermions can combine to produce composite systems
    (e.g., spinor bilinears) exhibiting bosonic behavior.
  @ Fermions without fermions:
    Kálnay IJTP(77);
    Paredes & Cirac PRL(03)cm/02,
    et al PRA(02);
    Mecklenburg & Regan PRL(11)-a1003
    + news PhysOrg(11)mar,
    ns(11)may [from properties of a background space; electron hopping in graphene];
    Wetterich AP(10)-a1006,
    JPCS(12)-a1201 [from classical statistics];
    Kawamura a1406 [from scalar fields];
    > s.a. composite models; Fermionization;
      dirac fields [from bosons]; spinors in field theory
      [from pure gravity].
  @ Composite fermions: Liebing & Blaschke PPN(15)-a1406;
    Son PRX(15) [effective field theory and symmetries].
Related Topics
  @ Causal fermion systems: 
    Finster in(06)gq [variational principle];
    Finster FTP-a1605,
    JPCS(18)-a1709 [continuum limit, primer];
    Finster Sigma(20)-a1711 [causal action principle];
    Finster a1812-conf [intro];
    Finster & Kindermann JMP(20)-a1908 [gauge-fixing procedure];
    Finster & Jokel a1908-in [introduction];
    Oppio AHP(20)-a1909 [mathematical foundations];
    Finster & Platzer a1912 [asymptotically flatness and positive energy];
    Finster & Oppio a2004 [local algebras];
    Kleiner a2006-PhD [and spacetime fields];
    Finster et al a2101 [dynamical wave equation];
    Finster & Kamran a2101 [fermionic Fock spaces];
    > s.a. discrete models; emergence;
      Initial-Value Problem; unified theories.
  @ Types of fermions: Henneaux et al JHEP(14)-a1310 [higher-spin, gravitational interactions];
    Zhu et al PRX(16) [triple-point fermions];
    Levine a1901
      [non-local, small-scale randomized dispersion relation and entropy volume law];
    Wang & Li a1907 [π-type];
    Lee a1912 [mass-dimension-1, including higher-spin, rev];
    Hoff da Silva et al a2006 [exotic fermions, and the gup];
    Ahluwalia book(19)-a2007 [mass dimension one fermions].
  @  Other topics: Chung & Daoud MPLA(14)-a1412 [one-parameter generalized algebra];
    Rinehart a1505 [classical formulation];
    Shapiro a1611 [covariant derivative];
    Finster & Reintjes ATMP(18)-a1708 [fermionic signature operator];
    Spadaro a2003 [discrete fermions, correlation functions].
  > Other topics: see Fermi-Einstein
    Condensation; geons and Kinks [fermionic];
    Solid Light; particle statistics [including
    fermion number]; Quasiparticles; solitons.
main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 27 jan 2021