|  Discretized / Lattice Gravity | 
Classical Versions
  > s.a. gravity theories / discrete geometry;
  semiclassical quantum gravity [twisted geometry]; teleparallel
  gravity; {& DeWitt}.
  * Idea: The best-known version
    is Regge calculus, in which the discrete structure is a simplicial complex and
    the variables are its edge lengths; One variant is dynamical triangulations,
    in which all edge lengths are taken to be unit, and there is also a version in
    which the variables are areas; A less rigid piecewise-flat geometry is twisted
    geometry.
  @ General references:
    Lindquist & Wheeler RMP(57);
    Brewin CQG(98)gq/97 [ADM].
  @ Connection / triad variables:
    Boström et al gq/93 [discretization];
    Dupuis et al a1701 [different polarizations];
    > s.a. connection formulation.
  @ Triangulations, simplices: Ko & Roček JHEP(06)ht/05,
    ht/06-conf [effective action and variation];
    Lee IJMPA(09)gq/06 [emergence];
    Dittrich & Ryan CQG(11)-a0807,
    PRD(10) [phase-space descriptions];
    Yukawa PRD(11)-a1104
      [master equation for Markov process of a 2D spacetime lattice];
    Dittrich & Höhn CQG(12)-a1108 [canonical simplicial gravity];
    Khatsymovsky GRG(11);
    Höhn JPCS(12)-a1110 [canonical formalism, rev];
    Wieland CQG(15)-a1407 [4D, new action, with spinors as fundamental variables];
    > s.a. first-order actions for general
      relativity; regge calculus.
  @ Consistent discretizations:
    Gambini & Pullin gq/01-in,
    GRG(05)gq-GRF [classical and quantum];
    Bahr et al PRD(11)-a1101 [discretizations and reparametrization invariance];
    Brewin PRD(12)-a1104 [Einstein-Bianchi system].
  @ Other discretizations: de Albuquerque et al PRL(03)ht,
    MPLA(03)ht-conf [Euclidean, non-commutative spectral principle dynamics];
    Gambini & Pullin in(05)gq,
    IJMPD(06)gq/05-proc;
    Gambini & Pullin CQG(08)-a0807 [uniform discretizations].
  @ Specific spacetimes: Brewin & Kajtar PRD(09)-a0903 [Oppenheimer-Snyder];
    Brewin PRD(17)-a1703 [Cauchy evolution of Gowdy, Brill and Teukolsky initial data].
  @ 3D (2+1 dimensions):  Waelbroeck CQG(90) [from the Chern-Simons formulation of 2+1 gravity];
    Criscuolo & Waelbroeck gq/96 [constant curvature];
    Berra-Montiel & Rosales-Quintero IJMPA(15)-a1406 [with cosmological constant, canonical analysis].
  @ Continuum limit: Feinberg et al NPB(84) [and fundamental nature].
  @ Related topics: Wheater JPA(94) [random surfaces and strings in various dimensions];
    Gionti CQG(05)gq [Poincaré-invariant, first-order].
Quantum versions > s.a. canonical quantum gravity;
  discrete spacetime models; quantum regge
  calculus; spin-foam models; spin networks.
  @ Reviews: Loll gq/97-conf,
    LRR(98)gq;
    Loll NPPS(01)ht/00 [lorentzian];
    Hamber GRG(09)-a0901;
    Ambjørn et al PoS-a1105 [specially dynamical triangulations].
  @ Connection / loop representation: Loll ACosm(95)gq,
    NPPS(97)gq,
    proc(97)gq;
    Loll CQG(98)gq/97 [algebra of diffeomorphism constraints];
    Fort et al PRD(97)gq/96.
  @ Consistent discretization: Gambini & Pullin PRL(03)gq/02 [canonical formalism],
    CQG(03)gq/02 [and cosmology],
    Pra(04)gq,
    gq/04-proc [canonical quantum gravity].
  @ Continuum limit: Vergeles ht/06,
    JETP(13) [and state doubling problem];
    Hamber et al PRD(12)-a1212 [triangulation version of the Wheeler-DeWitt equation, vacuum state].
  @ Euclidean: Krzywicki APPB(96)hl/95 [rev];
    Catterall et al EPJP(12)-a0912 [and de Sitter space].
  @ Diffeomorphism invariance: Corichi & Zapata NPB(97)gq/96;
    Wetterich LNP(13)-a1201. 
  @ Related topics: Greensite PLB(91) [minimum length from lattice regularization];
    Malyshev RMS(01)gq [and Gibbs measure];
    Wetterich PLB(11)-a1108,
    AP(12)-a1201 [in terms of fermions];
    Cooperman a1410 [renormalization];
    Hamber PRD(15)-a1506 [scaling exponents];
    Mandrysz & Mielczarek a1804 [ultralocal phase transition];
    Majid a1810 [on a square graph].
Other Theories
  > s.a. discrete geometries; graph theory in physics;
  lattice field theory and gauge theory.
  @ References: Zubkov PLB(04)hl/03 [teleparallel gravity].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 31 jan 2019