|  Random Tilings and Triangulations | 
In General > s.a. statistical
  geometry; tilings [space of tilings].
  * Examples: The Voronoi
    or Delaunay complexes defined by a uniformly random set of points in
    (M, qab),
    or by a continuous nucleation (Mehl-Johnson) model.
  * Aboav-Weaire law:
    A correlation between the number of faces of a cell and that of
    its neighbors; In 2D, m(n) = 6 – a
    + (6a+σ(n))/n, where
    m(n) is the average number of sides of cells with
    n-sided neighbors, and σ(n) the
    variance of the number of edges per cell.
  @ General references: Miles MB(70)-mr;
    Santaló 76;
    Brilliantov et al JPA(94) [continuous nucleation];
    Richard JPA(99)cm;
    Matzutt a0712.
  @ Aboav-Weaire law: Weaire Met(74);
    Aboav Met(80);
    Lambert & Weaire Met(81);
    Peshkin et al PRL(91);
    Lauritsen et al JPI(93)cm;
    Fortes JPA(95);
    Mason et al JPA(12) [geometric formulation]; > s.a. networks.
  @ Coloring: Di Francesco et al NPB(98)cm/97;
    Bouttier et al NPB(02).
  @ Related topics: Lauritsen et al IJMPC(94)cm/93 [Monte Carlo];
    Richard et al JPA(98)cm/97 [entropy];
    Baake & Höffe JSP(00)mp/99 [diffraction];
    Veerman et al CMP(00) [Brillouin zones, constant curvature];
    Kenyon AIHP(97)m.CO/01 [random domino, measure];
    Desoutter & Destainville JPA(05)cm/04 [3D rhombus tilings, flip dynamics];
    Mecke et al AAP(08) [iteration];
    Colomo & Pronko PRE(13)-a1306 [third-order phase transition].
  @ Johnson-Mehl models:
    Chiu AAP(95) [limit theorems];
    Garcia AAP(95);
    Bollobás & Riordan PTRF(07) [2D, percolation].
  @ Other generalized types: Lautensack & Zuyev AAP(08) [random Laguerre tessellations];
    Cowan AAP(10) [from iterative cell division].
2D Riemannian Manifolds
  > s.a. Percolation; spin models.
  @ Euclidean plane: Mecke MOS(84);
    Joseph & Baake JPA(96) [entropy];
    Di Francesco et al NPB(98)cm/97 [coloring];
    Kostov PLB(02)ht/00 [3-color problem];
    Hayen & Quine AAP(02) [moments of area distribution];
    Calka AAP(02) [sizes of circles containing or contained in cells],
    AAP(03) [principal geometric characteristics],
    AAP(03) [distribution of the number of sides];
    Destainville et al JSP(05),
    Widom et al JSP(05) [high symmetry];
    Pinchasi et al JCTA(06) [empty convex polygons];
    Böröczky et al JGP(06) [Weaire sum rule].
  @ 2D sphere: Miles Sankhya(71).
  @ 2D torus: Higuchi NPB(99) [number of Hamiltonian cycles].
Higher-Dimensional Riemannian Manifolds
  @ In E3: Meijering Philips(53);
    Gilbert AMS(62);
    Miles SAAP(72);
    Mecke MOS(84);
    Hug et al AAP(04) [shape of large cells].
  @ In En: Zähle AnnProb(88);
    Møller AAP(89) [convex cells, mean-value relations];
    Mecke & Stoyan AAP(01) [connectivity number];
    Chatterjee et al AM(10) [allocation rule of Lebesgue measure with subpolynomial decay of the tail];
    Xu et al TMP(12)
      [Poisson-distributed vertices and randomly assigned edges].
  @ Other manifolds:
    Escudero JGP(08) [spherical manifolds].
Of a Lorentzian Manifold
  @ Triangulations:
    Di Francesco et al NPB(01) [1+1 model].
And Physics > s.a. lattice field theory;
  tilings; voronoi tilings.
  * Applications: Random
    tilings are used as models of nucleation in crystals, or random lattices for
    gauge theory and quantum gravity.
  @ General references: Ziman 79; Lee in(85).
  @ Polycrystals and foams: Aboav Met(83),
    Met(84).
  @ Examples and effects: Davison & Sherrington JPA(00) [glassy behavior];
    Charbonnier et al a1701
      [large-N limit and and topological 2D gravity];
    Stéphan a2003-ln [effect of boundary conditions on bulk properties].
  @ Thermodynamics: Leuzzi & Parisi JPA(00) [with Wang tiles].
  @ In field theory: Ciucu MAMS-mp/03 [2D electromagnetism].
  @ In cosmology: de Laix & Vachaspati PRD(99)hp/98;
    Schaap & van de Weygaert A&A(00)ap,
    ESO(01)ap/00,
    ap/01-in [Delaunay].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 5 feb 2021