|  Non-Commutative Spacetime  Description and properties of non-commutative spacetime;
      see also non-commutative gravity. | 
In General > s.a. non-commutative geometry [categorical approach];
  quantum geometry; quantum spacetime;
  Spectral Triple.
  * Rem: The spectral
    triple can be generalized; One replaces Hilbert spaces with Krein
    spaces, and Dirac operators are Krein-selfadjoint.
  @ Intros and reviews: Majid LNP(00)ht,
    JMP(00)ht [and quantum groups];
    Saito G&C(00);
    Balachandran Pra(02)ht [fuzzy spacetime];
    Masson mp/06-ln;
    Perini IJMPA(08)-proc;
    Lizzi a0811-proc;
    Chamseddine & Connes CMP(10)-a0812 [introduction and overview];
    Chamseddine a0901-proc;
    Chamseddine & Connes a1008-MG12;
    Zhang & Zhang a1108;
    Yang IJMPD(16)-a1610 [emergent spacetime and phenomenology];
    Chamseddine a1805-talk.
  @ General references: Rosen AP(62) [complex combinations of x and p]; Chamseddine &
    Fröhlich ht/93-proc;
    Madore & Mourad JMP(98)gq/96 [differential calculus and Minkowski space];
    Mangano JMP(98)gq/97 [even D, path integral];
    Strohmaier JGP(06)mp/01;
    Moretti RVMP(03)gq/02 [C*-algebra approach];
    Agostini JMP(05)ht/05 [operators and integration];
    Martinetti IJMPA(09)-a0904-proc [notion of line element];
    Franco PhD(11)-a1108 [Lorentzian];
    Bizi et al a1611 [and space and time dimensions of algebras];
    Vilela IJTP(17)-a1710 [geometry];
    Poulain a1811-PhD;
    Bizi a1812-PhD.
  @ Interpretation: Chaichian et al PLB(04)ht;
    Kosiński & Maślanka ht/04;
    Sakellariadou et al PRD(11)-a1106 [dissipation and quantization];
    Bianchi & Rovelli PRD(11)-a1105.
  @ Non-commutative coordinates: Doplicher et al CMP(95)ht/03;
    Toller qp/97,
    PRA(99)qp/98,
    IJTP(99)qp/98;
    Dzhunushaliev GRG(02)ht/01 [interpretation];
    Jarvis & Morgan FPL(06) [Born reciprocity];
    Bander PRD(07)ht [Lorentz-invariant];
    Piacitelli Sigma(10)-a1004;
    Vilela a1901 [length scales].
  @ Non-commutative lattices: Bimonte et al PLB(94) [distances];
    Balachandran et al JGP(96)ht/95 [from posets as finite topologies];
    't Hooft gq/96-ln;
    Landi & Lizzi mp/98-in [projective systems];
    > s.a. lattice field theories.
  @ Fuzzy, quantum spacetime:
    Madore CQG(92);
    Balachandran et al NPPS(94)ht;
    Mack & Schomerus ht/94;
    Kehagias et al JMP(95)ht [modified Kaluza-Klein];
    Sładkowski ht/96;
    Demaret et al gq/97;
    Francis phy/99;
    Requardt & Roy CQG(01) [fuzzy lumps];
    de Albuquerque et al PRL(03)ht [Euclidean, from spectral action],
    MPLA(03)ht;
    Scholtz et al a1905;
    > s.a. quantum spacetime.
  > Related topics:
    see linear connections; Hopf Algebra;
    matrix [models]; non-commutative gravity
    [singularities]; uncertainty; Very Special Relativity.
Special Cases, Other Structures and Spacetime Properties
  > s.a. deformed minkowski space;
  higher-dimensional gravity; kaluza-klein theories.
  @ Locally non-commutative spacetime: Bahns & Waldmann RVMP(07)m.QA/06;
    Heller et al LMP(07) [C*-algebraic model].
  @ And causality: Seiberg et al JHEP(00)ht;
    Chu et al IJMPA(06)ht/05;
    Abreu & Neves a1108;
    Franco & Eckstein CQG(13)-a1212 [algebraic formulation],
    Sigma(14)-a1310 [almost-commutative geometries],
    a1409-in [rev];
    Bizi & Besnard a1411 [disappearance of causality at small scales];
    Franco & Wallet CM(16)-a1507 [on Moyal planes];
    Besnard JPCS(15)-a1508 [isocone-based approach];
    Mercati & Sergola PLB(18)-a1810 [light cone];
    > s.a. non-commutative field theory.
  @ Effective non-commutativity: Das & Gegenberg GRG(08)-ht/04 [geodesics in Gödel-like spacetimes];
    Corichi & Zapata IJMPD(08)-a0705 [from 1D, polymeric quantum geometry];
    > s.a. 3D quantum gravity.
  @ Area quantization / discreteness: Romero et al PRD(03)ht;
    Amelino-Camelia et al PLB(09).
  @ Snyder proposal / spacetime: Snyder PR(47) [coordinates as operators];
    Elias & Steele IJMPE(07)ht/06 [massless scalar propagator];
    Guo et al FPC(07)ht/06,
    Guo ht/06-proc [and de Sitter invariance];
    Romero & Zamora PLB(08)-a0802 [quantum of area];
    Girelli Sigma(10)-a1009 [K-loop and Lie triple system];
    Stern IJGMP(12) [particle dynamics and Poincaré invariance];
    Lu & Stern NPB(12)-a1108,
    NPB(12)-a1110 [particle dynamics];
    Gouba & Stern NPB(12)-a1111 [supersymmetric extension];
    Valtancoli IJMPA(12)-a1209 [translational invariance and quantum field theory];
    Ma & Zhao ChPC(14)-a1305 [some physical consequences];
    Mignemi a1308 [deviations from special relativity];
    Ivetić et al CQG(14) [curved, particle dynamics];
    Mignemi & Strajn a1501 [quantum mechanics];
    Ivetić PRD(19)-a1910 [electrodynamics];
    Valtancoli a2102 [area of d-sphere];
    > s.a. dimensionality of spacetime; non-commutative
      geometry and field theory; path integrals.
  @ Other types of spacetimes: Tomassini & Viaggiu CQG(14)-a1308 [uncertainty relations for FLRW cosmologies];
    Burić & Madore a1508 [dS and FLRW spaces];
    Fritz & Majid CQG(17)-a1611 [spherically symmetric spacetimes, semiclassical];
    Ballesteros et al JPCS(17)-a1702 [(A)dS];
    Burić et al EPJC(18)-a1709,
    Jurman FdP(19)-a1710 [fuzzy de Sitter];
    Jafari a1811 [Schwarzschild and weak gravitational wave];
    Ballesteros et al PLB(19)-a1905 [κ-(A)dS];
    > s.a. gödel spacetimes.
  @ Related topics: Masson JMP(96)qa/95 [submanifolds, quotients];
    Coquereaux phy/96 [higher-order differentials];
    Jaffe phy/97 [invariants];
    Perrot LMP(99) [BRS cohomology & Chern character];
    Hawkins CMP(04)m.QA/02 [obstructions],
    MPLA(03) [compatibility];
    Schwarz NPB(03) [supergeometry];
    Sardanashvily mp/03,
    mp/03,
    m.QA/07 [differential operators];
    Licht ht/05-conf [star product for Snyder's approach];
    Perini & Tornetta RVMP(14)-a1211 [scale-covariant quantum spacetime];
    Abreu et al a1501 [with variable non-commutativity parameter];
    Anjana et al IJMPA(17)-a1704 [Hausdorff dimension].
  > Related topics:
    see fractals [fractal spacetime]; types
    of distances; Worldline.
Phenomenology > s.a. non-commutative geometry
  [including examples] and physics; quantum-gravity
  phenomenology [minimal length]; wormholes.
  @ And DSR: Kowalski-Glikman
    & Nowak IJMPD(03);
    Heuson gq/03.
  @ And Lorentz invariance:
    Anisimov et al PRD(02) [violations];
    Chaichian et al PLB(04)ht;
    Wang et al IJMPA(17)-a1702 [violation, superluminal electrons];
    Much & Vergara IJGMP(18)-a1704.
  @ Particle propagation:
    Gamboa et al ht/01,
    Falomir et al PRD(02)ht [Aharonov-Bohm effect];
    Amelino-Camelia et al PRD(03) [string-inspired];
    Nandi et al NPB(18)-a1807 [using Dirac's constraint analysis];
    > s.a. geodesics;
    non-commutative physics.
  @ Constraints on non-commutativity:
    Akofor et al PRD(09) [from cmb];
    Horvat & Trampetić PRD(09)-a0901 [from primordial nucleosynthesis],
    JHEP(11)-a1009 [from holography],
    PLB(12) [from the reheating phase after inflation];
    Joby et al PRD(15)-a1412 [from Planck data];
    Kobakhidze et al PRD(16)-a1607 [from GW150914].
  @ Related topics: Vilela Mendes EPJC(05)ht/04;
    Hinchliffe et al IJMPA(04) [rev];
    Martinis & Mikuta-Martinis gq/05 [near-horizon geometry];
    Lukierski APPB(10)-a1012-conf [and deformed dynamical theories];
    Saha & Gangopadhyay CQG(16)-a1508
      [probe using gravitational-wave resonant-bar detectors];
    Jenks et al a2008 [gravitational-wave and binary-pulsar observations].
  > Related topics:
    see cmb polarization; Reference Frame;
    thermal radiation; tests of the equivalence principle;
    unimodular relativity; velocity.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 21 feb 2021