|  Tests of the Equivalence Principle | 
In General > s.a. eötvös experiment
  and fifth force; quantum equivalence principle.
  * Idea: Possible
    consequences of a small violation of the equivalence principle include
    small differences in the free-fall acceleration of different materials,
    and a rotation of the plane of polarization for linearly polarized
    radiation propagating over cosmological distances.
  * History: The earliest
    recorded test was by Galileo; The best experimental test is to compare the
    free-fall acceleration of different materials; Late 1800s, validated to
    one part in 108 by the Eötvös
    experiment; 2001, Eöt-Wash experiments on the weak principle,
    the best tests so far, confirm it up to corrections of order
    10−13 and have reached their thermal
    limit; 2004, The most accurate experiment with atoms shows no departure [@ news
    pw(04)nov];
    2016, MICROSCOPE launched.
  * Of the strong equivalence principle:
    2003, The only technique available to test it is Lunar Laser Ranging (>
    see tests of general relativity);
    2004, results give \(\Delta(m_{\rm g}/m_{\rm i})_{\rm SEP}\) = \((-2.0 \pm 2.0)
    \times 10^{-13}\), and \(\eta:= 4\beta-\gamma-3 = (4.4 \pm 4.5) \times 10^{-4}\).
  * Results from the Nordtvedt effect:
    Experiments give \(m_{\rm g}/m_{\rm i}\) = 1 + \(\eta(U_{\rm G} / mc^2)\),
    with \(\eta < 10^{-12}\) so far.
  * Results with self-energy:
    Satisfied up to 10−3 [@ Baeßler et al
    PRL(99),
    news PT(99)nov].
  * Plans: 2004, NASA-ESA STEP
    (Satellite Test of the Equivalence Principle) to be put in orbit in 2005, aims at
    \(10^{-18}\) accuracy; SEE (Satellite Energy Exchange); GReAT experiment, involving a
    free fall by 4 km in the stratosphere, will test the wep to 1 part in \(5 \times 10^{15}\)
    at 95% cl, 100 times better than ground-based; 2005, MICROSCOPE
    (MICRO-Satellite à trainée Compensée pour l'Observation du Principe
    d'Équivalence) scheduled for 2008, will measure differential acceleration
    of test masses in a rotating spacecraft to better than 1 part in \(10^{15}\);
    2010, MICROSCOPE now scheduled for 2012 launch;
    2012, MICROSCOPE now scheduled for 2016 launch, Galileo Galilei
    (GG) mission planned, with accuracy of 1 part in \(10^{17}\), and STEP is still only
    a design concept; 2014, STE-QUEST (as opposed to MICROSCOPE
    and STEP) will use fundamentally quantum-mechanical systems.
  @ Status, reviews: Damour CQG(96)gq, gq/97-proc;
    news pw(05)jan;
    news NASA(07)may;
    issue CQG(12)#18;
    news Sci(15)mar;
    Schlippert et al a1507-proc [Earth-based tests];
    Tino et al PPNP(20)-a2002 [and precision gravity tests].
  @ General references:
    Gabriel & Haugan PRD(90);
    Klein & Mittelstaedt AJP(97)apr [demo];
    CPLEAR collaboration PLB(99) [K0s];
    Haugan & Lämmerzahl LNP(01)gq;
    Luo et al PRD(02)gq/01 [rotation];
    Gundlach NJP(05) [lab tests];
    Newburgh EJP(08) [simple demonstration];
    Hohensee et al PRL(11)-a1102 [matter-wave redshift experiments and clock comparisons];
    Hohensee & Müller JMO(11)-a1106 [with matter waves];
    Unnikrishnan & Gillies CQG(12);
    Hohensee & Müller proc(14)-a1307
      [differences between spaceborne and quantum mechanical tests, and conventional tests];
    Nobili PRD(16)-a1608 [smallness of general relativistic effects on experiments].
Specific Systems and Experiments > s.a. fine-structure constant;
  neutrino experiments; neutrino oscillations;
  tests of general relativity with light.
  * Cosmology: A field non-minimally coupled
    to the electromagnetic Lagrangian can induce a violation of the Einstein equivalence
    principle, which in a cosmological context would break the validity of the cosmic distance
    duality relation and cause a time variation of the fine structure constant.
  @ Spin-gravity coupling: Silenko & Teryaev PRD(07)gq/06;
    Tarallo et al PRL(14)-a1403
    + Phys(14)jul [search for effects on different falling Sr isotopes];
    Hojman & Asenjo a1610
      [testing the universality of free fall as opposed to spin-gravity coupling].
  @ Neutrino oscillations:
    Halprin et al PRD(96);
    Fogli et al PRD(99)hp;
    Datta PLB(01).
  @ STEP mission: Sumner GRG(04);
    Overduin et al ASR(09)-a0902;
    Overduin et al CQG(12)-a1401;
    Pereira et al PRL(16)-a1607 [as a test of MOND].
  @ MICROSCOPE experiment:
    Touboul et al CQG(12);
    Bergé et al JPCS(15)-a1501 [status];
    Pihan-Le Bars et al a1705;
    Hardy et al SSR(17)-a1707 [signal processing];
    Touboul et al PRL(17)
    + news sn(17)dec,
    Touboul et al CQG(19)-a1909 [first results];
    > s.a. MICROSCOPE site.
  @ Other Earth satellites:
    CQG(01)#13 issue;
    Moffat & Gillies NJP(02)gq [wep];
    Nobili et al PLA(03),
    CQG(12) [GG proposal];
    Iorio GRG(04)gq/03 [wep];
    Nobili et al GRG(08) [LAGEOS and LAGEOS II, limitations];
    Ni PRL(11)-a1105 [Gravity Probe B and wep II];
    Aguilera et al CQG(14)-a1312,
    Altschul et al ASR(15)-a1404
      [STE-QUEST proposed satellite mission, using cold-atom interferometry];
    Williams et al NJP(16)-a1510 [QTEST, on the ISS];
    Nobili & Anselmi PLA(18)-a1709 [expected improvements];
    Nobili & Anselmi PRD(18)-a1803 [after MICROSCOPE];
    Ciufolini et al a1907.
  @ Solar system:
    Anderson et al ap/95-conf,
    ApJ(96)ap/95 [Earth-Mars ranging];
    Overduin PRD(00)gq [and higher-dimensional gravity];
    Shiomi PRD(06)-a0811 [geophysical];
    Rubincam PRD(11) [Mars seasonal polar caps];
    Williams et al CQG(12),
    Murphy et al CQG(12) [lunar laser ranging];
    Overduin et al CQG(14)-a1307;
    De Marchi & Congedo IJMPD(17)-a1702
      [experiment to measure η on the future mission BepiColombo];
    > s.a. gravitational redshift.
  @ Of the strong equivalence principle: Congedo & De Marchi PRD(16)-a1602 [spacecraft near Lagrangian points];
    news sn(18)jan [triple star system].
  @ Binary pulsars:
    Wex A&A-gq/95 [proposal];
    Arzoumanian ap/02-proc.
  @ Extragalactic transient sources: Wei et al PRL(15)-a1512,
    Tingay & Kaplan ApJL(16)-a1602 [fast radio bursts];
    Nusser ApJL(16)-a1601 [tighter constraints];
    Wang et al PRL(16)-a1602 [PeV neutrinos from blazar flares];
    Sang et al MNRAS(16)-a1605 [short GRBs and the PPN parameter γ];
    Yang et al MNRAS(17)-a1706 [polarized GRBs];
    Yu et al ApJ(18)-a1708 [robust method using time delays];
    Tangmatitham & Nemiroff a1903 [cosmological GRBs];
    Wei & Wu PRD(19)-a1905 [GRB polarization].
  @ Gravitational waves: Yao et al a1909 [binary neutron star merger GW170817];
    Yang et al a1912 [LIGO-Virgo catalog GWTC-1];
    Unnikrishnan & Gillies a2007.
  @ Other astrophysics:
    Guzzo et al APP(02) [supernova neutrinos];
    Freire et al CQG(12)-a1205 [for strongly self-gravitating bodies];
    Asvathaman et al MNRAS(16)-a1506
    + news pt(17)jan [supermassive black holes];
    Wei et al ApJL(16)-a1601 [using TeV blazars];
    Yang & Zhang PRD(16)-a1608,
    Zhang & Gong ApJ(17)-a1612 [Crab pulsar and γ];
    Wu et al PRD(17)-a1703 [polarized light from  astrophysical events];
    Wei et al JCAP(17)-a1710 [multimessenger, GW170817 and its electromagnetic counterparts];
    Xie PRD(18)-a1807 [astrometry of quasars];
    Amorim et al, GRAVITY Collaboration PRL(19)-a1902 [near Sgr A*];
    Li et al PRR(20)-a1912 [black-hole shadows];
    Li et al a2102 [photon ring].
  @ Dark sector: Kesden & Kamionkowski PRD(06)ap [galaxy tidal tails];
    Mohapi et al JCAP(16)-a1510,
    Bahrami JCAP(19)-a1810 [constraints].
  @ CMB: Boucher et al PRD(04)ap [constraints];
    Arai et al PRD(16)-a1605 [spectral distortions];
    > s.a. cmb.
  @ Other cosmology: Amendola & Quercellini PRL(04)ap [large-scale structure];
    Bertolami et al GRG(09) [Abell cluster A586];
    Hees et al PRD(14)-a1406 [electromagnetic sector];
    Creminelli et al JCAP(14)-a1312 [consistency relations for Large Scale Structure];
    di Serego Alighieri IJMPD(15)-a1501 [cosmic polarization rotation];
    Martins et al JCAP(15)-a1508 [and the stability of the fine-structure constant];
    Luo et al JHEA-a1604 [with supercluster Laniakea];
    Holanda & Barros PRD(16)-a1606;
    Holanda et al CQG(17)-a1705;
    Bonvin & Fleury JCAP(18)-a1803;
    Bonvin et al a2004 [proposed null test based on galaxy surveys];
    Giani & Frion a2005 [lensing time delays].
  @ Torsion-balance tests: Schlamminger et al PRL(08) [rotating];
    Wagner et al CQG(12)-a1207;
    Cowsik et al a1808 [long-period].
  @ Atom interferometry:
    Fray et al PRL(04);
    Dimopoulos et al PRL(07)gq/06;
    Giulini a1105-conf [rev];
    Wolf et al a1109-proc;
    Herrmann et al CQG(12) [rev];
    Schlippert et al PRL(14)-a1406
    + news db(14)jun [using Rb and K atoms (different elements), no effect up to 10−7];
    Zhou et al PRL(15)-a1503;
    Hartwig et al NJP(15)-a1503;
    Roura PRL(17)-a1509 [circumventing Heisenberg's uncertainty principle];
    Lefèvre et al a1705-proc;
    Asenbaum et al a2005 [\(10^{-12}\) level].
  @ Other atomic systems:
    Peters et al Nat(99)aug [cooled Cs atoms];
    Duan et al PRL(16)
      [Rb atoms of opposite spin orientation fall at the same rate];
    Rosi et al nComm(17)-a1704
    + news sn(17)apr [atoms in superpositions of internal energy eigenstates];
    Zhou et al a1904 [Rb atoms].
  @ Anti-hydrogen:
    Holzscheiter et al PRP(04);
    Perez & Sacquin CQG(12) [GBAR experiment];
    Doser et al CQG(12) [AEGIS experiment, pulsed cold beam of antihydrogen];
    news pw(13)apr [ALPHA experiment at CERN];
    Scampoli & Storey MPLA(14) [AEGIS experiment at CERN].
  @ Other proposals: Álvarez & Mann PRD(97)gq/96 [lepton and meson sectors];
    Wesson IJMPD(05)gq/06 [and higher-dimensional gravity];
    Kirch phy/07 [muonium];
    Reasenberg & Phillips CQG(10)
    + news po(10)may,
    Reasenberg et al CQG(12) [wep, suborbital rocket];
    Saha PRD(14)-a1306 [COW test of the weak equivalence principle and spacetime non-commutativity];
    Bonder et al PRD(13)-a1305 [with unstable particles];
    Hohensee et al PRL(13)-a1303 [radio-frequency spectroscopy];
    Kalaydzhyan a1608-conf [relativistic matter in accelerators];
    Terno et al a1811 [optical interferometric test proposal].
  > Related topics: see Nordtvedt Effect;
    radiation [accelerated charge]; self-force [radiation reaction].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 28 feb 2021