|  Deformations of Minkowski Spacetime | 
In General > s.a. minkowski space.
  * Idea: Deformed and non-commutative
    versions of Minkowski spacetime are motivated by expected features of quantum gravity.
  @ References: Majid ht/94;
    D'Andrea JMP(06)ht/05 [and Snyder's non-commutative geometry, coordinate algebra as operators on Hilbert space];
    Meljanac et al EPJC(08)-a0705 [star product realizations];
    Freidel & Kowalski-Glikman a0710-proc [symmetries and field theory];
    Bentalha & Tahiri PRD(08).
  > Related mathematical topics: see non-commutative
    geometry and non-commutative spacetime; quantum group.
  > Related topics in physics:
    see diffusion; klein-gordon fields;
    maxwell fields; quantum gravity models.
Kappa-Minkowski Spacetime
  > s.a. doubly special relativity; momentum space [curved].
  * Idea: In κ-Minkowski
    spacetime, space has a commutative spatial structure, but t does not commute
    with the spatial coordinates.
  @ Reviews:
    Lukierski a1611-conf [historical perspective].
  @ General references: Ghosh PLB(07)ht/06 [and DSR];
    Agostini IJMPA(09)-a0711 [covariant formulation of Noether's theorem];
    Dabrowski et al PRD(10)-a0912 [Lorentz covariant];
    Meljanac et al MPLA(10) [deformed Snyder spacetime];
    Dąbrowski & Piacitelli PLA(11)-a1006 [Poincaré-covariant model];
    Meljanac et al PRD(11) [Lie-algebraic deformations with undeformed Poincaré algebra];
    Amelino-Camelia et al PLB(11)-a1102 [relativity of locality];
    Kovačević & Meljanac JPA(12)-a1110;
    Mercati IJMPD(16)-a1112 [quantum differential geometry and field theory];
    Pachoł PhD(11)-a1112 [deformed symmetries and DSR];
    Amelino-Camelia et al EPJC(13)-a1206 [and relative locality];
    Matassa JGP(14)-a1212 [2D, spectral triple];
    Kovačević et al IJMPA(15)-a1307 [hermitian realizations];
    Dimitrijević et al Sigma(14)-a1403 [gauge theory];
    Anjana & Harikumar PRD-a1501 [spectral dimension];
    Pachoł & Vitale JPA(15)-a1507 [κ-Minkowski Lie algebra in any dimension];
    Carmona et al Univ-a2104 [and Hopf algebra approach].
  @ Steructure:    Amelino-Camelia et al PLB(09)-a0707 [boosts and space-rotations];
    Meljanac & Krešić-Jurić IJMPA(11)-a1004 [differential structure].
  @ And matter: Arzano et al CQG(10)-a0908 [Lorentz-invariant field theory];
    Smolin GRG(11)-a1004 [propagating particle and locality paradoxes];
    Harikumar et al PRD(11)-a1107 [Lorentz force and Maxwell's equations];
    Meljanac et al JHEP(11)-a1111 [λφ4 scalar field theory];
    Harikumar et al PRD(12) [geodesic equation];
    Verma a1410 [Dirac equation];
    Aschieri et al JHEP(17)-a1703 [observables and dispersion relations];
    Arzano & Consoli PRD(18)-a1808 [propagation of quantum fields];
    Kupriyanov et al a2010 [deformation of U(1) gauge theory].
  @ Phenomenology: Tamaki et al PRD(02) [and astrophysics];
    Harikumar et al MPLA(11)-a0910 [Dirac equation and hydrogen atom spectrum];
    Verma & Nandi GRG(19) [photon gas thermodynamics].
Other Deformations
  @ References:
    de Azcárraga & Rodenas JPA(96),
    qa/96-proc [h-deformed, calculus];
    Bauer & Wachter EPJC(03)mp/02 [q-deformed];
    Miao PTP(10)-a0912 [non-commutative extension];
    Cervantes et al FdP(12)-a1207-conf [quadratic deformation, star product];
Loret et al IJMPD(17)-a1610 [vector-like deformations].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 24 apr 2021