|  Canonical General Relativity: Formalisms and Approaches | 
In General > s.a. canonical formulation.
  * Idea: The standard approaches to
    4D canonical general relativity use  a 3+1 decomposition of spacetime, where the 3D
    constant-time manifold is a spacelike hypersurface and the configuration variables on
    it are a spatial metric, or an orthonormal triad; Other possibilities include using
    other variables for the same type of spacetime decomposition, different splittings of
    spacetime, or more covariant formalisms.
  @ Modifications: Gomes & Shyam JMP(16)-a1608 [results on spatially covariant generalizations];
    Montesinos et al PRD(18)-a1712 [Lorentz-covariant variables].
Other Variables > s.a. 3D general relativity;
  3D gravitation; quasilocal gravity.
  * Idea: In a slicing (as opposed
    to threading) approach to canonical gravity, one chooses a (C∞)
    3-manifold Σ which will act as the (unchanging) spatial manifold, and encodes all the information
    necessary to reconstruct a spacetime metric into a set of fields defined on Σ.
  @ General references: Peldán CQG(91)
 [non-uniqueness of Hamiltonian];
    Tate CQG(92);
    Lewandowski & Okołów CQG(00)gq/99 [2-form, BF-like];
    Farajollahi & Luckock GRG(02)gq/01 [and local observer];
    Barbour & Ó Murchadha a1009 [conformal superspace
      as the configuration space].
  @ Embedding variables, reference fluid:
    Kuchař PRD(92);
    Braham PRD(94)gq/93 [cylindrical symmetry];
    Brown gq/94-proc;
    Brown & Kuchař PRD(95)gq/94 [and time];
    Montani & Zonetti IJMPA(08)-a0807.
  @ Dirac eigenvalues: Landi & Rovelli PRL(97)gq/96;
    Landi LNP(02)gq/99; > s.a. supergravity.
  @ Spinorial variables: Grant CQG(99)gq/98 [any dimension].
  @ Other variables: Rosas-Rodríguez gq/05
      [electric and (complex) magnetic fields];
    Katanaev TMP(06)gq [including det g];
    Anderson CQG(08) [cyclic variables whose velocities
      are N, Na, A0];
    Reisenberger PRL(08) [null data, Poisson brackets];
    Klusoň PRD(12)-a1206 [conformal-traceless decomposition, Hamiltonian analysis];
    Parattu et al PRD(13)-a1303 [canonical, thermodynamically conjugate variables].
  > Connection dynamics:
    see connection formulation; loop-variable
    formulation; Metric-Affine Gravity.
Non-Standard Spacetime Decompositions
  > s.a. decomposition; quasilocal general relativity [2+2].
  * Threading
    vs slicing: Instead of defining the variables on an abstract 3-manifold,
    identified with a t = constant slice, one can define them on the world-lines
    in a spacetime-filling congruence.
  * Remark: Both slicing
    and threading are examples of the congruence point of view, dating
    back to Ehlers in(59).
  @ General references: Cattaneo (in italian); Landau & Lifshitz v2.
  @ Gravitomagnetism: Jantzen in-GR12;
    Jantzen et al AP(92)gq/01.
  @ Timelike foliations:
    Maran gq/03-wd [Ashtekar-like];
    Alexandrov & Kádár CQG(05) [lqg-like].
  @ Threading: Ehlers in(59);
    Perjés pr(88),
      MPLA(93);
    Jantzen & Carini in(91);
    Perjés NPB(93);
    Fodor & Perjés GRG(94);
    Boersma & Dray JMP(95)gq/94,
    JMP(95)gq/94,
    GRG(95)gq/94;
    Gielen & Wise PRD(12)-a1112 [as spontaneous symmetry breaking];
    Wise JPCS(14)-a1310 [general relativity in terms of "observer space"];
    Park a1810.
Based on Non-Standard Surfaces
  > s.a. asymptotic flatness; Linkages.
  * Null infinity:
    Construct a phase space for the radiation degrees of freedom.
  @ Null infinity:
    Ashtekar & Streubel PRS(81);
    Helfer CMP(95).
  @ Null surface: Goldberg FP(84);
    Goldberg & Soteriou CQG(95).
Covariant Formulation
  > s.a. hamiltonian dynamics; symplectic
  structures; multiverse [as space of classical universes].
  * Idea: Consider as
    phase space the space of solutions of the Einstein equation.
  * Motivation: Explicit
    covariance; It makes it easier to relate conserved quantities at
    spatial and null infinity.
  * Limitations: It will probably
    not tell us anything about the regime in which singularities arise.
  * Symplectic structure:
    Tangent vectors at a point gab
    of phase space are solutions γab
    of the linearized equation around gab;
    The symplectic structure, acting on two such vectors, is
Ω|g(γ,γ') = (1/16πG) ∫ εmnpq (γms ∇n γ'pr − γ'ms ∇n γpr) dS ,
    integrated over any Cauchy surface Σ.
  @ General references, and histories:
    Savvidou BJP(05)gq/04-proc;
    Savvidou CQG(06)gq [Barbero connection];
    Gielen & Wise GRG(12)-a1206-GRF [field of local observers];
    Hajian & Sheikh-Jabbari PRD(16)-a1512 [conserved charges].
  @ Proposals:
    Segal; Szczyrba CMP(76);
    Ashtekar & Magnon-Ashtekar CMP(82);
    Ashtekar et al in(87);
    Crnković NPB(87);
    Crnković & Witten in(87);
    Zuckerman in(87);
    Ashtekar et al in(91);
    Frauendiener & Sparling PRS(92) [in terms of soldering form and connection];
    Esposito et al NCB(94)gq/95,
    Dolan & Haugh CQG(97)gq/96 [new variables];
    Savvidou CQG(01)gq [and Dirac algebra];
    Rovelli gq/02,
    LNP(03)gq/02;
    Nester et al a1210-proc [Hamiltonian boundary term];
    Cremaschini & Tessarotto APR(16)-a1609,
    EPJC(17)-a1609
      [extended "DeDonder-Weyl" formalism based on a synchronous variational principle];
    Castellani & D'Adda a1906 [gravity coupled to p-forms];
    Barbero et al a2103 [metric vs tetrad formulations],
    a2105 [with non-metricity, torsion, and boundaries];
    Wieland a2104 [Barnich-Troessart bracket].
  @ Special types of spacetimes: Palmer JMP(78) [with symmetries];
    Anco & Tung JMP(02)gq/01 [spatially bounded].
  @ From a Lagrangian formulation: Friedman & Schutz ApJ(75),
    ApJ(78).
  @ For other theories of gravity: Nester MPLA(91) [general formalism];
    Randono CQG(08)-a0805 [Einstein-Cartan].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 18 may 2021